Math, asked by sujal9959, 1 year ago

x=3+root 8 find the value of x square +1/x square

Answers

Answered by Mylo2145
28
 \pink{ \underline{ \underline {\purple{\huge{ \mathfrak{\star{heya \: buddy\star}} }}}}}

x = 3 + \sqrt{8}
 \frac{1}{x} = \frac{1}{3 + \sqrt{8} } \\ = \frac{1}{3 + \sqrt{8} } \times \frac{3 - \sqrt{8} }{3 - \sqrt{8} } \\ = \frac{3 - \sqrt{8} }{9 - 8} \\ = \frac{3 - \sqrt{8} }{1} \\ = 3 - \sqrt{8}
 {x}^{2} + {( \frac{1}{x}) }^{2} \\ = {(3 + \sqrt{8}) }^{2} + {(3 - \sqrt{8}) }^{2} \\ = 9 + 8 + 6 \sqrt{8} + 9 + 8 - 6 \sqrt{8} \\ = 34
Thus, 34 will be the final answer!

♥️<br /> {Be } ^{Brainly } ♥️

BrainlyVirat: Great ;)
sujal9959: Great
Mylo2145: ty! ☺️
Answered by BrainlyQueen01
36
Hey there!

___________________

Given :

x = 3 + √8

To find :

x {}^{2} + \frac{1}{x {}^{2} }

Solution:

x = 3 + \sqrt{8} \\ \\ \frac{1}{x} = \frac{1}{3 + \sqrt{8} } \times \frac{3 - \sqrt{8} }{3 - \sqrt{8} } \\ \\ \frac{1}{x} = \frac{3 - \sqrt{8} }{(3) {}^{2} - ( \sqrt{8} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{3 - \sqrt{8} }{9 - 8} \\ \\ \frac{1}{x} = 3 - \sqrt{8} \\ \\ \bold{now..} \\ \\ x + \frac{1}{x} = 3 + \cancel{ \sqrt{8}} + 3 - \cancel{ \sqrt{8}} \\ \\ x + \frac{1}{x} =3 + 3 \\ \\ x + \frac{1}{x} =6\\ \\ \bold{on \: squaring \: both \: sides..} \\ \\ (x + \frac{1}{x} ) {}^{2} = (6) {}^{2} \\ \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 \times \cancel x \times \frac{1}{ \cancel x} = 36 \\ \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 36 \\ \\ x {}^{2} + \frac{1}{x {}^{2} } = 36 - 2 \\ \\ \boxed{ \bold{ x {}^{2} + \frac{1}{x {}^{2} } = 34}}.

___________________________

Thanks for the question!

BrainlyQueen01: Thanks :)
BrainlyVirat: Great :)
BrainlyQueen01: Thanks :)
BrainlyQueen01: Thanks :)
RohitSaketi: awarding 105marks to this 5 marks problem. (extra marks for presentation)
BrainlyQueen01: Thanks G :)
Mylo2145: Great answer!
BrainlyQueen01: Thanks :)
sujal9959: Superb
Similar questions