Math, asked by kapiljain358332, 3 months ago

x^3/(x+1)^2 integral​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \int \frac{ {x}^{3} }{(x + 1) ^{2} } dx \\

  = \int \frac{ {x}^{3} }{x^{2}  + 2x + 1 } dx \\

  = \int \frac{  x( {x}^{2}   + 2x + 1) - 2( {x}^{2} + 2x + 1)  +  3x  +  2 }{x^{2}  + 2x + 1 } dx \\

 =  \int \: xdx - 2 \int \: dx  + \int \frac{3x + 2}{ {x}^{2} + 2x + 1 }dx  \\

 =   \frac{ {x}^{2} }{2}  - 2x + 3 \int \frac{(x + 1)dx}{(x + 1)^{2} }  -  \int  \frac{dx}{(x + 1)^{2} }  \\

 =  \frac{ {x}^{2} }{2}  - 2x  + 3 ln(x + 1)  +  \frac{1}{x + 1}  + c \\

Answered by mathdude500
5

\begin{gathered}\Large{\sf{{\underline{Formula \: Used - }}}}  \end{gathered}

1. \:  \:  \:  \boxed{ \sf{ \int \:  {x}^{n} dx = \dfrac{ {x}^{ n+ 1} }{ n+ 1}  + c}}

2. \:  \:  \:  \boxed{ \sf{ \int \: \dfrac{1}{x} dx =  log(x)  + c}}

3. \:  \:  \:  \boxed{ \sf{ \int \: k \: dx = kx + c}}

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: Let \: I \:  =  \: \int\dfrac{ {x}^{3} }{ {(x + 1)}^{2} } dx

To evaluate this integral, we use method of Substitution,

 \bf \: Put \: x + 1 = y\bf\implies \:dx \:  =  \: dy \: and \: x \:  = y - 1

So, given integral can be rewritten as

\rm :\longmapsto\:I \:  =  \int\dfrac{ {(y - 1)}^{3} }{ {y}^{2} } dy

\rm :\longmapsto\:I \:  =  \int\dfrac{ {y }^{3} - 3 {y}^{2} + 3y - 1  }{ {y}^{2} } dy

\rm :\longmapsto\:I =  \int \: \bigg(\dfrac{ {y}^{3} }{ {y}^{2} }  - \dfrac{3 {y}^{2} }{ {y}^{2} }  + \dfrac{3y}{ {y}^{2} }  - \dfrac{1}{ {y}^{2} }  \bigg) dy

\rm :\longmapsto\:I =  \int \: \bigg( y - 3 + \dfrac{3}{y}  -  {y}^{ - 2} \bigg) dy

\rm :\longmapsto\:I = \dfrac{ {y}^{2} }{2}  - 3y + 3 log(y)  - \dfrac{ {y}^{ - 1} }{ - 1}  + c

\rm :\longmapsto\:I = \dfrac{ {y}^{2} }{2}  - 3y + 3 log(y)  + \dfrac{1}{ {y} }  + c

\rm :\longmapsto\:I = \dfrac{ {(x + 1)}^{2} }{2}  - 3(x + 1) + 3 log(x + 1)  + \dfrac{1}{ {(x + 1)} }  + c

Additional Information :-

1. \:  \:  \:  \boxed{ \sf{ \int \: sinx \: dx \:  =  - cosx + c}}

2. \:  \:  \:  \boxed{ \sf{ \int \: cosx \: dx = sinx + c}}

3. \:  \:  \:  \boxed{ \sf{ \int \:  {sec}^{2} x \: dx \:  =  \: tanx \:  +  \: c}}

4. \:  \:  \:  \boxed{ \sf{ \int \:  {cosec}^{2}x \: dx  = - cotx  + c}}

5. \:  \:  \:  \boxed{ \sf{ \int \: secx \: tanx \: dx = secx + c}}

6. \:  \:  \:  \boxed{ \sf{ \int \: cosecx \: cotx \: dx =  - cosecx + c}}

Similar questions