x-3/x+1 = 3/5 urgently need
Answers
Answer:
4(3x−1)=3(5x)
If f(x)=g(x),then ln(f(x))=ln(g(x))
ln(4(3x−1))=ln(3⋅5x)
Apply log rule: logc(ab)=logc(a)+logc(b)
ln(3⋅5x)=ln(3)+ln(5x)=ln(4(3x−1))=ln(3)+ln(5x)
Apply log rule: loga(xb)=b⋅loga(x)
ln(4(3x−1))=(3x−1)ln(4), ln(5x)=xln(5)so we get (3x−1)ln(4)=ln(3)+xln(5)
To simplify (3x−1)ln(4)
First, simplify ln(4)
Rewrite 4 in power base form: 4=22
=ln(22)
Apply log rule: loga(xb)=b⋅loga(x)
ln(22)=2ln(2)
=2ln(2)
So now, 2ln(2)(3x−1)
So now we have 2ln(2)(3x−1)=ln(3)+xln(5)
To solve, first expand ln(2)(3x−1)
Distribute parenthesis using a(b+c)=ab+ac
a=2ln(2),b=3x,c=−1
=2ln(2)⋅3x+2ln(2)(−1)
Since +(−a)=−a , so we get
=2ln(2)⋅3x−2ln(2)⋅1
or by simplifying =6xln(2)−2ln(2)
So now we have 6xln(2)−2ln(2)=ln(3)+xln(5)
Add 2ln(2) on both sides,
6xln(2)−2ln(2)+2ln(2)=ln(3)+xln(5)+2ln(2)
refining, we get 6xln(2)=ln(3)+xln(5)+2ln(2)
Subtracting xln(5) from both sides
6xln(2)−xln(5)=ln(3)+xln(5)+2ln(2)−xln(5)
and refining, 6xln(2)−xln(5)=ln(3)+2ln(2)
Let us factor 6xln(2)−xln(5) by factoring out the common term x
so we get x(6ln(2)−ln(5))
x(6ln(2)−ln(5))=ln(3)+2ln(2)
Divide both sides by 6ln(2)−ln(5)
x(6ln(2)−ln(5))6ln(2)−ln(5)=ln(3)+2ln(2)6ln(2)−ln(5)
Now we refine ln(3)+2ln(2)6ln(2)−ln(5)
First we simplify 6ln(2)−ln(5) by applying log rule: alogc(b)=logc(ba)
ln(26)−ln(5)=ln(265)
and since 26=64 , so ln(645)
and we get =ln(3)+2ln(2)ln(645)
Next simplify ln(3)+2ln(2) by applying log rule alogc(b)=logc(ba)
So because 2ln(2)=ln(22) , we get
=ln(3)+ln(22)
Apply log rule: logc(a)+logc(b)=logc(ab)
ln(3)+ln(22)=ln(22⋅3)=ln(12)
So now the final solution is x=ln(12)ln(645)
Answer:
9
Step-by-step explanation:
by cross multiplication
5(x-3)=3(x+1)
5x-15=3x+3
5x-3x=3+15
2x=18
x=18/2
x=9