Math, asked by raut33992, 1 year ago

(x+3) : (x+11) =(x-2) :(x+1) then find the value of x. ​

Answers

Answered by Anonymous
24

\large{\underline{\underline{\mathfrak{\red{\sf{Answer-}}}}}}

\boxed{x=5}

\large{\underline{\underline{\mathfrak{\red{\sf{Explanation-}}}}}}

Given expression :

  • \sf{(x+3):(x+11)=(x-2):(x+1)}

To find :

  • Value of x.

Solution :

\sf{(x+3):(x+11)=(x-2):(x+1)}

\implies \sf{\dfrac{x+3}{x+11}+\dfrac{x-2}{x+1}}

By cross multiplying,

\implies \sf{(x+1)(x+3)=(x-2)(x+11)}

Solving it by horizontally method,

\implies x(x+3)+1(x+3) = x(x+11)-2(x+11)

\implies \sf{\cancel{x^2}} + 3x + x + 3 = \sf{\cancel{x^2}} + 11x - 2x - 22

\implies 4x - 9x = -22 - 3

\implies -5x = -25

\implies x = \sf{\cancel{\dfrac{-25}{-5}}}

\implies \boxed{x=5}

Answered by Anonymous
19

Question :

(x+3) : (x+11) = (x-2) : (x+1) then, find the value of x.

Solution :

\underline{\bold{Given:}}

  • (x+3) : (x+11) = (x-2) : (x+1)

\underline{\bold{To\:Find:}}

  • The value of x.

\implies  (x+3) : (x+11) = (x-2) : (x+1) \\ \implies\frac{x +  3}{x + 11}  =  \frac{x - 2}{x + 1}  \\\implies ( x + 1)(x + 3) = (x - 2)(x + 11) \\\implies  x(x + 3) + 1(x + 3) =  x(x + 11) - 2(x + 11) \\ \implies  x^2 + 3x + x + 3= x^2 + 11x - 2x - 22 \\ \implies x^2 + 4x + 3 = x^2 + 9x - 22 \\  \implies x^2 + 4x - x^2 - 9x  = - 22 - 3\\ \implies - 5x =  - 25\\ \implies x = \frac{ - 25}{ - 5}  \\ \implies x = 5

\boxed {\green{\therefore{The\:value\:of\:x\:is\:5.}}}

Similar questions