Math, asked by selina1, 1 year ago

x+3/x-2 - 1-x/x = 17/4 solve quadratic equation by factorization method


siddhartharao77: I think x = 4 (or) -2/9

Answers

Answered by KUNALGOYAL7065
4
Equation at the end of step  1  :

(x + 3) (1 - x) 17 (——————— - ———————) - —— = 0 (x - 2) x 4
Answered by tardymanchester
5

Answer:

The roots of the given quadratic equation is x=-\frac{2}{9},x=4

Step-by-step explanation:

Given : Expression \frac{x+3}{x-2}-\frac{1-x}{x}= \frac{17}{4}

To solve : The quadratic equation by factorization method?

Solution :

\frac{x+3}{x-2}-\frac{1-x}{x}=\frac{17}{4}

Taking LCM,

\frac{(x+3)x-(1-x)(x-2)}{x(x-2)}=\frac{17}{4}

Cross multiply,

4(x^2+3x-(x-2-x^2+2x))=17(x^2-2x)

4(x^2+3x-x+2+x^2-2x)=17(x^2-2x)

4(2x^2+2)=17x^2-34x

8x^2+8=17x^2-34x

9x^2-34x-8=0

9x^2-36x+2x-8=0

9x(x-4)+2(x-4)=0

(9x+2)(x-4)=0

(9x+2)=0,(x-4)=0

x=-\frac{2}{9},x=4

Therefore, The roots of the given quadratic equation is x=-\frac{2}{9},x=4

Similar questions