Math, asked by Sindhudevi4970, 11 months ago

x^{3} + x^{2}y + xy^{2} + y^{3} = 81 dy/dx ज्ञात कीजिए

Answers

Answered by Sharad001
55

★彡 Q u e s t i o n ★彡

 \rm if \:  {x}^{3}  +  {x}^{2} y +  {y}^{3}  = 81 \: then \: find \:  \frac{dy}{dx}  \\

★彡 A n s w e r 彡★

 \to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ - (3 {x}^{2}   + 2xy)}{ {x}^{2} + 3y^{2} } } \:

★彡 S o l u t i o n 彡★

We have ,

 \mapsto \rm  {x}^{3}  +  {x}^{2} y +  {y}^{3}  = 81 \\  \\ \rm \red{ differentiate \: with \: respect \: to} \: x \: on \: \\  \green{ \rm both \: sides} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \rm  \frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} } \\  \\ \large \boxed{ \bf \: chain \: rule \: } \\  \\  \to \rm \frac{d}{dx} uv = u \frac{d}{dx} v + v \frac{d}{dx} u \\  \\  \sf \: therefore \\  \\  \to \rm 3 {x}^{2}  +  {x}^{2}  \frac{dy}{dx}  + y \frac{d}{dx}  {x}^{2}  + 3y^{2}\frac{dy}{dx}  = 0 \\  \\  \to \rm \rm 3 {x}^{2}  +  {x}^{2}  \frac{dy}{dx}  + 2xy + 3y^{2} \frac{dy}{dx} = 0  \\  \\  \to \rm \frac{dy}{dx}  \bigg( {x}^{2}  + 3y^{2} \bigg) =  - 3 {x}^{2}  - 2xy \\  \\  \to \boxed{ \rm  \frac{dy}{dx}  =  \frac{ - (3 {x}^{2}   + 2xy)}{ {x}^{2} + 3y^{2}} }

Answered by amitnrw
1

(dy/dx) = - (3x²  + 2xy + y²)/(x² + 2xy + 3y²)   यदि x³ + x²y  + xy² + y³   = 81

Step-by-step explanation:

dy/dx ज्ञात कीजिए

x³ + x²y  + xy² + y³   = 81

=> 3x²  + x²dy/dx  + y2x  + x2ydy/dx  + y² + 3y²dy/dx  = 0

=> (dy/dx)(x² + 3y²  + 2xy)  + 3x²  + 2xy + y² = 0

=>  (dy/dx) = - (3x²  + 2xy + y²)/(x² + 2xy + 3y²)

और अधिक जानें :

sin(x²+5)"

brainly.in/question/15286193

sin (ax+b) फलन का अवकलन कीजिए

brainly.in/question/15286166

Similar questions