Math, asked by snehamondal623, 6 months ago

x-3/x+3-x+3/x-3+6×6/7=0​

Answers

Answered by aryan073
5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Question :

\blue\bigstar\rm{\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+ 6 \times\dfrac{6}{7}=0}

To find :

The value of x=?

\large\sf{\underline{\color{red} \: Solution :}}

 \\  \implies \sf \:  \frac{x - 3}{x + 3} -  \frac{x + 3}{x - 3}   + 6 \times  \frac{6}{7}  = 0

 \\  \implies \sf \: \:  \frac{(x - 3)(x - 3) - (x + 3)(x + 3)}{(x + 3)(x - 1)}  + 6 \times  \frac{6}{7}

 \\  \implies \sf \:  \frac{x(x - 3) - 3(x - 3) - (x(x + 3) + 3(x + 3))}{x(x - 3) + 3(x - 3)}  +  \frac{36}{7}  = 0

 \\  \implies \sf \:  \frac{ {x}^{2} - 3x - 3x + 3 - ( {x}^{2}   + 3x + 3x + 9)}{ {x}^{2}  - 3x + 3x - 9}  +  \frac{36}{7}  = 0

 \\  \implies \sf \:  \frac{ ({x}^{2} - 6x + 3)  -  {x}^{2}  - 6x - 9}{ {x}^{2}  - 9}  +  \frac{36}{7}  = 0

 \\  \implies \sf \:   \frac{ {x}^{2} - 6x + 3 -  {x}^{2}  - 6x - 9 }{ {x}^{2} - 9 } +  \frac{36}{7}   = 0

 \\  \implies \sf \:  \frac{ - 12x - 6}{ {x}^{2} - 9 }  +  \frac{36}{7}  = 0

 \\  \implies \sf \:  \frac{ - 12x - 6}{  {x}^{2}   - 9}  =  -  \frac{36}{7}

  \\ \implies \sf \: 7( - 12x - 6) =  - 36( {x}^{2}  - 9)

 \\  \implies \sf \:  - 84x - 42 =  - 36 {x}^{2}  + 324

 \\  \implies \sf \:  - 84x - 42 + 36 {x}^{2}  - 324 = 0

 \\  \implies \sf \: 36 {x}^{2}  - 84x - 366 = 0

 \\  \implies \sf \: 18 {x}^{2}  - 42x - 183 = 0 \:  \: ...from \: dividing \: by \: 2

 \\  \implies \sf \: 6 {x}^{2}  - 14x - 61 = 0 \:  \:  \: from \: dividing \: by \: 3

 \\  \implies \sf \: 6 {x}^{2}  - 14x - 61 = 0

 \bullet { \underline{ \bf{by \: using \: determinant \: method}}}

 \implies \sf \:  {b}^{2}  - 4ac

  \\ \implies \sf \:  {(14)}^{2}  - 4(6)(61)

 \implies \sf \: 196 - 1464

  \\ \implies \sf \:  - 1268

 \bullet \underline{ \bf{by \:using \: formula \: method}}

  \\ \implies \sf \: x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}

 \\  \implies \sf \: x =  \frac{14 \pm \sqrt{ - 1268} }{2 \times 6}

 \\  \implies \sf \: x =  \frac{14 \pm \: 2 \sqrt{317}  }{12}

 \\  \implies \large \sf \: x =  \frac{7 \pm \sqrt{317} }{6}

 \bullet \bf { roots \: of \: this \: quadratic \: equation \: is \: x =  \frac{7  +  \sqrt{317} }{6}  \: and \: x =  \frac{7 -  \sqrt{317} }{6} }

■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□■□

Answered by ilinfadey149
0

Answer:

given 3(x - 4) + 5(x + 6) - 8(x - 7) = 0  

3x - 12 + 5x + 30 - 8x + 56 = 0  

8x - 12 + 30 - 8x = 0

+8x - 8x =0

Step-by-step explanation:

Similar questions