Math, asked by raj471, 1 year ago

(x-3) ( x-4) = 34/33^2. solve

Answers

Answered by pinquancaro
174

Answer:

The solution is x=\frac{133}{33},\frac{98}{33}

Step-by-step explanation:

Given : Expression (x-3)(x-4)=\frac{34}{33^2}

To find : Solve the expression ?

Solution :

Expression (x-3)(x-4)=\frac{34}{33^2}

Solve,

x^2-4x-3x+12=\frac{34}{1089}

x^2-7x+12=\frac{34}{1089}

Cross multiply,

1089x^2-7623x+13068=34

1089x^2-7623x+13034=0

Applying middle term split,

1089x^2-3234x-4389x+13034=0

33x(33x-98)-133(33x-98)=0

(33x-133)(33x-98)=0

33x-133=0,33x-98=0

x=\frac{133}{33},x=\frac{98}{33}

Therefore, The solution is x=\frac{133}{33},\frac{98}{33}

Answered by VishalSharma01
46

Answer:

Step-by-step explanation:

Solution :-

Here, we have

⇒ (x - 3) (x - 4) = 34/33²

⇒ x² - 7x + 12 - 34/33² = 0

⇒ x² - 7x + 13034/33² = 0

⇒ x² - 7x + 98/33 × 133/33 = 0

x² - 231/33x + 98/33 × 133/33 = 0

By using factorization method, we get

⇒ x² - (98/33 + 133/33)x + 98/33 × 133/33 = 0

⇒ x² - 98/33x - 133/33x + 98/33 × 133/33 = 0

⇒ (x² - 98/33x) - (133/33x - 98/33 × 133/33) = 0

⇒ x(x - 98/33) - 133/33(x - 98/33) = 0

⇒ (x - 98/33) (x - 133/33) = 0

⇒ x - 98/33 = 0 or x - 133/33 =

x = 98/33, 133/33

Hence, x = x = 98/33, 133/33.

Similar questions