Math, asked by bhargavi81, 1 year ago

x^3 + y^3 - 12xy +64 when x + y = -4

Answers

Answered by Noah11
30
\large{\boxed{\bold{Answer:}}}


 {x}^{3} +  {y}^{3} - 12xy + 64 \\  \\   =  >  { x}^{3} +  {y}^{3} + (4 {)}^{3}  - 3(4xy) \\  \\  =  > (x + y + 4)( {x}^{2} +  {y}^{2} +  {4}^{2} - xy - 4y - 4x) \\  \\  =  > x + y =  - 4 \\  \\  =  > ( - 4 + 4)( {x}^{2} +  {y}^{2} +  {4}^{2}  - xy - 4y - 4x) \\  \\  =  > (0)( {x}^{2} +  {y}^{2} +  {4}^{2}  - xy - 4y - 4x) \\  \\  = 0

\large{\boxed{\bold{Hope\:it\:helps\:you!}}}

Noah11: any doubts ask me
Noah11: :)
bhargavi81: hi
Answered by Shubhendu8898
11

Given,

  x + y = -4 \\ \\ \text{Making  cube of both sides} \\ \\  (x + y)^{3}  = (-4)^{3} \\ \\ x^{3}  + y^{3} + 3xy(x+y) = -64 \\ \\ x^{3}  + y^{3} + 3xy* (-4) = -64 \\ \\  x^{3}  + y^{3}  - 12xy  = -64 \\ \\    x^{3}  + y^{3}  - 12xy  + 64 = 0 \ \ \textbf{Ans.}

Similar questions