Math, asked by a7549524320, 11 months ago

x^3+y^3=(x+y)(x^2-x*y+y^2)​

Answers

Answered by rishu6845
8

 </p><p>To \: prove  \longrightarrow \\  {x}^{3}  +  {y}^{3}  = (x + y) \: ( {x}^{2}  - xy +  {y}^{2} )

 Concept \: used\longrightarrow \\ \boxed{ \pink{ (x + a) \: (x + b) =  {x}^{2}  + (a + b)x + ab}} \\ \boxed{ \pink{  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}} \\  </p><p>Proof \longrightarrow \\  \underline{ \blue{First \: method}} \\ RHS \\  = (x + y) \: ( {x}^{2}   - xy +  {y}^{2} ) \\  = x( {x}^{2}  - xy +  {y}^{2} ) + y( {x}^{2}  - xy +  {y}^{2} ) \\  =  {x}^{3}  -  {x}^{2} y + x {y}^{2}  +  {x}^{2} y - x {y}^{2}  +  {y}^{3}  \\  -  {xy}^{2} andx \:  {y}^{2}cancel \: out \: each \: other \\ similarly - x {y}^{2}  \: and \: x {y}^{2}  \: cancel \: out \: each \: other  \\  =  {x}^{3}  +  {y}^{3}  \\  = LHS

 \underline{ \blue{Second \: method}} \longrightarrow \\  {(x + y)}^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y) \\  =  &gt;  {(x + y)}^{3}  - 3xy(x + y) =  {x}^{3}  +  {y}^{3}  \\  =  &gt;  {x}^{3}  +  {y}^{3}  =  {(x + y)}^{3}  - 3xy(x + y) \\ Taking \: (x + y) \: common \: from \: RHS \\  =  &gt;  {x}^{3}  +  {y}^{3}  = (x + y) \: ((  \: {x +  y)}^{2}  - 3xy \: ) \\  =  &gt;  {x}^{3}  +  {y}^{3}  = (x + y) \: ( {x}^{2}  +  {y}^{2}  + 2xy - 3xy) \\  =  &gt;  {x}^{3}  +  {y}^{3}  = (x + y) \: ( {x}^{2} - xy  +  {y}^{2} )

Answered by Anonymous
5

Answer:

Step-by-step explanation:

We need to prove right side=left side

(x+y) (x^2-xy+y^2)

x(x^2-xy+y^2) +y(x^2-xy+y^2)

x^3-x^2y+xy^2+x^2y-xy^2+y^3

*****************************

Terms with opposite signs will be cut

-x^2y+x^2y will be cut

xy^2-xy^2 will be cut

****************************

x^3+y^

Similar questions