Math, asked by alexdivyanshuk, 8 months ago


- (x + 3y)i + (2x – y + 1)=8\i

Answers

Answered by pulakmath007
5

SOLUTION

GIVEN

\displaystyle\sf{ - (x + 3y)i + (2x - y + 1) =  \frac{8}{i}  }

TO DETERMINE

The value of x and y

EVALUATION

Here it is given that

\displaystyle\sf{ - (x + 3y)i + (2x - y + 1) =  \frac{8}{i}  }

\displaystyle\sf{ \implies \:  - (x + 3y)i + (2x - y + 1) =  \frac{8i}{ {i}^{2} }  }

\displaystyle\sf{ \implies \:  - (x + 3y)i + (2x - y + 1) =  \frac{8i}{ - 1}  }

\displaystyle\sf{ \implies \:  - (x + 3y)i + (2x - y + 1) =  - 8i }

Comparing both sides we get

2x - y + 1 = 0 - - - - - - (1)

x + 3y = 8 - - - - - - - (2)

From Equation 1 we get

y = 2x + 1

From Equation 2 we get

x + 6x + 3 = 8

⇒ 7x = 5

\displaystyle\sf{ \implies \:x =  \frac{5}{7} }

Thus we get

\displaystyle\sf{ y =  \frac{10}{7} + 1 =  \frac{17}{7}  }

FINAL ANSWER

\displaystyle\sf{ x =  \frac{5}{7}  \:  \: and \:  \: y =  \frac{17}{7} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. show that sinix=isinhx

https://brainly.in/question/11810908

2. if a+ib/c+id is purely real complex number then prove that ad=bc

https://brainly.in/question/25744720

Similar questions