Math, asked by sharvari1209, 11 months ago

x/\4 +1 /2x/\2 = 41 /9 solve for x by using the properties of proportion

Answers

Answered by stefangonzalez246
7

Value of x is 3 by using the properties of proportion.

Given

To solve the equation and find the value of "x" by using the properties of proportion.

Above equation can be solved by using componendo and dividendo theorem to find the value of x.

                             \begin{equation}\frac{x^{4}+1}{2 x^{2}}=\frac{41}{9}\end

By using componendo-Dividendo theorem. above equation becomes,

                             \begin{equation}\frac{x^{4}+1+2 x^{2}}{x^{4}+1-2 x^{2}}=\frac{41+9}{41-9}\end  

                            \begin{equation}\frac{\left(\left(x^{2}\right)^{2}+2 x^{2}+1\right)}{\left(\left(x^{2}\right)^{2}-2 x^{2}+1\right)}=\frac{41+9}{41-9}\end

Above equation is in ( a+b)^2 = a^2+b^2+2ab form, by applying the formula,

                             \frac{(x^{2}+1)^2}{(x^2-1)^2}  = \frac{50}{32}

                             \frac{(x^{2}+1)}{(x^{2}-1)} = \sqrt{\frac{50}{32} }

                             \frac{(x^{2}+1)}{(x^{2}-1)} = \frac{5\sqrt{2} }{4\sqrt{2} }

                             \frac{(x^{2}+1)}{(x^{2}-1)} = \frac{5}{4} . \frac{\sqrt{2} }{\sqrt{2} }

                             \frac{(x^{2}+1)}{(x^{2}-1)} = \frac{5}{4}

Again by componendo-Dividendo theorem,

                             \frac{x^{2}+1+x^{2} -1 }{x^{2}-1-x^{2}-1  } = \frac{5}{4}

                                 \frac{2x^{2} }{2} = \frac{5+4}{5-4}

                                   x^{2} = \frac{9}{1}

                                   x^{2} = 9

                                   x=\sqrt{9}

                                   x=3  

Therefore, value of x is 3.  

To learn more...

brainly.in/question/4024744                                                                                    

                       

           

Answered by priyanshukr9304
1

Step-by-step explanation:

hope you will understand this,....

Attachments:
Similar questions