X^4+1/x^4= 6239, find x+1/x pls quick
Answers
Answered by
34
hello users ....
solution:-
we know that :-
x² + y² = ( x+y)² - 2xy
Here,
X^4+1/x^4=(x²)² + 1/ (x²)²
= (x² + 1/x²)² - 2* x² * 1/x²
=> 6239 = (x² + 1/x²)² - 2
=> 6239 + 2 = (x² + 1/x²)²
=> (x² + 1/x²)² = 6241 = 79²
=> (x² + 1/x²) = 79
Now, Again..
(x² + 1/x²) = (x + 1/x )² - 2*x * 1/x
=> 79 = (x + 1/x )² - 2
=> 79 + 2 = (x + 1/x )²
=> (x + 1/x )² = 81 = 9²
=> (x + 1/x ) = 9 Answer
## hope it helps :)
solution:-
we know that :-
x² + y² = ( x+y)² - 2xy
Here,
X^4+1/x^4=(x²)² + 1/ (x²)²
= (x² + 1/x²)² - 2* x² * 1/x²
=> 6239 = (x² + 1/x²)² - 2
=> 6239 + 2 = (x² + 1/x²)²
=> (x² + 1/x²)² = 6241 = 79²
=> (x² + 1/x²) = 79
Now, Again..
(x² + 1/x²) = (x + 1/x )² - 2*x * 1/x
=> 79 = (x + 1/x )² - 2
=> 79 + 2 = (x + 1/x )²
=> (x + 1/x )² = 81 = 9²
=> (x + 1/x ) = 9 Answer
## hope it helps :)
Venkatasubbu:
Thank you
Similar questions