Math, asked by mynamisriju, 1 year ago

X^4 - 142 X^2 + 1 =0 then the value of x?

Answers

Answered by pinquancaro
1

Answer:

The values of x are x=\sqrt{71+12\sqrt{35}},-\sqrt{71+12\sqrt{35}},\sqrt{71-12\sqrt{35}},-\sqrt{71-12\sqrt{35}}

Step-by-step explanation:

Given : Equation x^4-142x^2+1=0

To find : The value of x?

Solution :

Let y=x^2 in the given equation x^4-142x^2+1=0

So, (x^2)^2-142(x^2)+1=0

y^2-142y+1=0

Solve by quadratic formula, y=\frac{-b\pm\sqrt{b^2-4ac}}{2a}

Here, a=1, b=-142 and c=1

y=\frac{-(-142)\pm\sqrt{(-142)^2-4(1)(1)}}{2(1)}

y=\frac{142\pm\sqrt{20164-4}}{2}

y=\frac{142\pm\sqrt{20160}}{2}

y=\frac{142\pm24\sqrt{35}}{2}

y=71\pm12\sqrt{35}

i.e. y=71+12\sqrt{35},71-12\sqrt{35}

Now substitute in y=x^2

When y=71+12\sqrt{35}

x^2=71+12\sqrt{35}

x=\pm\sqrt{71+12\sqrt{35}}

When y=71-12\sqrt{35}

x^2=71-12\sqrt{35}

x=\pm\sqrt{71-12\sqrt{35}}

Therefore, the values of x are x=\sqrt{71+12\sqrt{35}},-\sqrt{71+12\sqrt{35}},\sqrt{71-12\sqrt{35}},-\sqrt{71-12\sqrt{35}}

Answered by vishalsingh201997
0

Answer:

Step-by-step explanation:

Attachments:
Similar questions