Math, asked by eklavya2396, 7 months ago

x=4+√15.findx^3-1/x^3​

Answers

Answered by Bidikha
1

Given -

x = 4 +  \sqrt{15}

To find -

 {x}^{3}  -  \frac{1}{ {x}^{3} }

Solution -

x = 4 +  \sqrt{15}

 \frac{1}{x}  =  \frac{1}{4 +  \sqrt{15} }

By rationalising the denominator we will get -

 \frac{1}{x}  =  \frac{4 -  \sqrt{15} }{(4 +  \sqrt{15})(4 -  \sqrt{15} ) }

 \frac{1}{x}  =  \frac{4 -  \sqrt{15} }{ {(4)}^{2} -  {( \sqrt{15}) }^{2}  }

 \frac{1}{x}  =  \frac{4 -  \sqrt{15} }{16 - 15}

 \frac{1}{x}  =  \frac{4 -  \sqrt{15} }{1}

 \frac{1}{x}  = 4 -  \sqrt{15}

Now,

 =  {x}^{3}  -  \frac{1}{ {x}^{3} }

Putting the values we will get -

 =  {(4 +  \sqrt{15} )}^{3}  -  {(4 -  \sqrt{15}) }^{3}

 =  {(4)}^{3}  +  {( \sqrt{15} )}^{3}  + 3 {(4)}^{2}  \times  \sqrt{15}  + 3 \times 4 {( \sqrt{15}) }^{2}  -[  {(4)}^{3}  -  {( \sqrt{15}) }^{3}  - 3( {4)}^{2}  \sqrt{15}  +  3 \times 4  \times  \sqrt{15}  {}^{2}]

 =  {(4)}^{3}  +  {( \sqrt{15} )}^{3}  + 3 {(4)}^{2}  \sqrt{15}  + 3 \times 4 \times  {( \sqrt{15} )}^{2}  -  {(4)}^{3}  +  {( \sqrt{15}) }^{3}  + 3 {(4)}^{2}  \sqrt{15}  - 3 \times 4 \times  {( \sqrt{15}) }^{2}

 =  {( \sqrt{15} )}^{3}  + 3 {(4)}^{2}  \sqrt{15}  +  {( \sqrt{15} )}^{3}  + 3 {(4)}^{2}  \sqrt{15}

 = 15 \sqrt{15}  + 48 \sqrt{15}  + 15 \sqrt{15}  + 48 \sqrt{15}

 = 126 \sqrt{15}

Similar questions