Math, asked by jiya12314, 2 months ago

x= 4-√15 then find the value of x-1/x =?​

Attachments:

Answers

Answered by prince5132
19

GIVEN :-

  • x = 4 - √15.

TO FIND :-

  • The value of x - 1/x.

SOLUTION :-

Firstly let's calculate the value of 1/x,

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{1}{4 -  \sqrt{15} }  \\

On rationalising the denominator we get,

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{1}{4 -  \sqrt{15} }  \times  \frac{4 +  \sqrt{15} }{4 +  \sqrt{15} }  \\

 \implies \sf \:  \dfrac{1}{x}  =  \dfrac{4 +  \sqrt{15} }{4 ^{2} -  \sqrt{15} ^{2}   }  \\

\implies \sf \:  \dfrac{1}{x}  =  \dfrac{4 +  \sqrt{15} }{16 - 15}  \\

\implies \sf \:  \dfrac{1}{x}  = 4 +  \sqrt{15}  \\

Now According to the question,

\implies \sf \: x -  \dfrac{1}{x}  = 4 -  \sqrt{15}  -  \bigg(4 +  \sqrt{15}  \bigg) \\

\implies \sf \: x -  \dfrac{1}{x}  =4 -  \sqrt{15}  - 4 -  \sqrt{15}  \\

\implies \sf \: x -  \dfrac{1}{x}  = -  \sqrt{15}  -  \sqrt{15}  \\

\implies \underline{ \boxed{ \sf \: x -  \dfrac{1}{x}  = - 2 \sqrt{15} }}

Answered by Anonymous
7

Given :-

x = 4 - √15

To Find :-

Value of x - 1/x

Solution :-

\sf \dfrac{1}{x} = \dfrac{1}{4 + \sqrt{15}} \times \dfrac{4 - \sqrt{15}}{4 - \sqrt{15}}

\sf \dfrac{1}{x} = \dfrac{4+\sqrt{15}}{4^2 - \sqrt{15}^2}

\sf \dfrac{1}{x}=\dfrac{4 - \sqrt{15}}{16 - 15}

\sf\dfrac{1}x  = 4 + \sqrt{15}

\sf = 4 - \sqrt{15} - 4 - \sqrt{15}

Cancelling 4

\sf = -\sqrt{15} - \sqrt{15}

\sf = -2\sqrt{15}


prince5132: Great
Similar questions