Math, asked by rohankaibarta09, 9 months ago

X-4√2x+6=0 find the roots of the equation​

Answers

Answered by Abhishek474241
1

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • A polynomial
  • X²-4√2x+6

{\sf{\green{\underline{\large{To\:Verify}}}}}

  • Relationship between cofficient
  • Roots Or zeroes

{\sf{\pink{\underline{\Large{Explanation}}}}}

Roots

  • Spilt the middle term in such a way that the
  • product become 6 and sum become 4√2

X²-4√2x+6

=>X²-3√2x-√2x+6

=>x(x-3√2)-√2(x-3√2)

=>(x-3√2) (x-√2)

=>x=3√2,√2

Additional Information

Let the zeroes of the polynomial be\tt\alpha{and}\beta

Then,

\tt\alpha{+}\beta{=}\frac{-b}{a}

&

\tt\alpha{\times}\beta{=}\frac{c}{a}

Here,

a=1

b=-4√2

C=6

\tt\alpha{+}\beta{=}\dfrac{4\sqrt{2}}{1}

\tt\alpha{+}\beta{=}\dfrac{Cofficient\:of\:X}{Cofficient\:of\:x^2}=

&

\tt\alpha{\times}\beta{=}\dfrac{6}{1}

\tt{\large\alpha{\times}\beta{=}\dfrac{Constant\:term}{Cofficient\:of\:x^2}}

Hence,relation verified

Answered by Anonymous
0

Given ,

The polynomial is x² - 4√2x + 6

By middle term splitting method ,

 \Rightarrow \sf  {(x)}^{2}  - 3 \sqrt{2} x -  \sqrt{2} x+ 6 = 0 \\  \\ \Rightarrow \sf x(x - 3 \sqrt{2}  )-  \sqrt{2} (x - 3 \sqrt{2} ) = 0 \\  \\ \Rightarrow \sf   x -  \sqrt{2}  = 0 \:  \: or \:  \: x - 3 \sqrt{2}  = 0 \\  \\  \Rightarrow \sf  x =  \sqrt{2} \:  \: or \:  \: x = 3 \sqrt{2}

 \therefore \sf \bold{ \underline{The \:  roots \:  are  \: \sqrt{2} \:  and \: 3 \sqrt{2} }}

Similar questions