Math, asked by soyra, 11 months ago

X^4-3x^2+2=0 then what is the value of x

Answers

Answered by umiko28
3

Answer:

x=±√1,±√2

Step-by-step explanation:

\sf\{x}^{4}  -  {3x}^{2}  + 2 = 0 \\  \\  \bf\  \implies: { {x}^{2} }^{2}  -  {3x}^{2}  + 2 = 0 \\  \\  \sf\underline{let \:  {x}^{2} = y }   \\  \\  \sf\  \thereforen {y}^{2}  - 3y + 2 = 0 \\  \\\sf\  \implies: {y}^{2}   - 2y - y + 2 = 0 \\  \\ \sf\  \implies:y(y - 2) - 1(y - 2) = 0 \\  \\ \bf\  \implies:(y - 2)(y - 1) = 0 \\ \\   \\ \bf\ y - 2 = 0 \\\sf\  \implies:y = 2 \\  \bf\  \implies: {x}^{2}  = 2 \\ \bf\  \implies:x = ±\:\sqrt{2}   \\  \\   \bf\ y - 1 = 0\\  \bf\  \implies:y = 1\\  \bf\  \implies:  {x}^{2}  = 1 \\ \bf\  \implies:x =  ±\:\sqrt{1}

Answered by Anonymous
13

Answer:

 \tt\ x = ± \sqrt{1}  \: and \: ± \sqrt{2}

Step-by-step explanation:

  \bf\ {x}^{4}  -  {3x}^{2}  + 2 = 0 \\  \\  \sf\  \implies: { {x}^{2} }^{2}  -  {3x}^{2}  + 2 = 0 \\  \\  \tt\underline{let \:  {x}^{2} = y }   \\  \\  \sf\  \thereforen {y}^{2}  - 3y + 2 = 0 \\  \\\sf\  \implies: {y}^{2}   - 2y - y + 2 = 0 \\  \\ \sf\  \implies:y(y - 2) - 1(y - 2) = 0 \\  \\  \sf\  \implies:(y - 2)(y - 1) = 0 \\ \\   \\ \sf\ y - 2 = 0 \\\sf\  \implies:y = 2 \\  \sf\  \implies: {x}^{2}  = 2 \\ \sf\ { \implies:x = ±\:\sqrt{2} }  \\  \\   \bf\ y - 1 = 0\\  \bf\  \implies:y = 1\\  \bf\  \implies:  {x}^{2}  = 1 \\ \bf\ { \implies: \:x =  ±\:\sqrt{1}}

Similar questions