Math, asked by NahushNakhate, 1 year ago

√√√x =⁴√⁴√⁴√3x⁴+4, then the value of x⁴ is

Answers

Answered by MaheswariS
2

\textbf{Given:}

\sqrt{\sqrt{\sqrt{x}}}=\sqrt[4]{\sqrt[4]{\sqrt[4]{3x^4+4}}}

\textbf{To find:}

\text{The value of $x^4$}

\textbf{Solution:}

\text{Consider,}

\sqrt{\sqrt{\sqrt{x}}}=\sqrt[4]{\sqrt[4]{\sqrt[4]{3x^4+4}}}

\text{This can be written as}

((x^\frac{1}{2})^\frac{1}{2})^\frac{1}{2}=(((3x^4+4)^\frac{1}{4})^\frac{1}{4})^\frac{1}{4}

x^{\frac{1}{2}{\times}\frac{1}{2}{\times}\frac{1}{2}}=(3x^4+4)^{\frac{1}{4}{\times}\frac{1}{4}{\times}\frac{1}{4}

x^\frac{1}{8}=(3x^4+4)^\frac{1}{64}

\text{Raising bothsides to the power 64}

x^\frac{64}{8}=(3x^4+4)^\frac{64}{64}

x^8=3x^4+4

x^8-3x^4-4=0

x^8-4x^4+x^4-4=0

x^4(x^4-4)+1(x^4-4)=0

(x^4+1)(x^4-4)=0

\implies\bf\,x^4=4,-1

\textbf{Answer:}

\textbf{The value of $\bf\,x^4$ is 4 or -1}

Find more:

If 5^x-1 + 5^x+1=650 then find x​

https://brainly.in/question/11573395#

Similar questions