x= 4√ab/(√a+√b) then find (x+2√a)/(x-2√a) + (x+2√b)/(x-2√b)
Answers
Answered by
3
We use rationalization of denominators.
x y = 1 as we can see that y = 1/x
x = (√a + √b) / (√a - √b)
= (√a + √b)² / [ (√a - √b) (√a + √b) ]
= [a + b + 2 √(ab) ] / [a - b]
y = (√a - √b) / (√a + √b)
= (√a - √b)² / [ (√a + √b) (√a - √b) ]
= (a + b - 2 √(ab) ] / (a - b)
x+y = 2(a+b)/(a-b)
xy = 1
x² + xy + y²
= (x + y)² - x y
= 4 (a+b)² / (a-b)² - 1
= [4 (a+b)² - (a-b)² ] / (a-b)²
= [ 3 a² + 3 b² + 10 ab ] / (a-b)²
= 3 + 16 ab/(a-b)²
Answered by
0
Answer:
answer ✅✔️✅✔️✅✔️✅✔️✅✔️✅✅✔️✔️✅✔️✅✔️✅✔️✅✔️✅2✔️✔️✅✔️✅✔️✅✔️✅✔️✅✔️✔️✅✔️✅✔️✅✔️✅✅✔️
Attachments:
Similar questions