Math, asked by praneetrocks31, 1 year ago

x^4+px^3+rx+s^2 is a perfect square then find p^3+8r
Pls solve ​

Answers

Answered by MaheswariS
0

\textbf{Given:}

\text{$x^4+px^3+rx+s^2$ is a perfect square}

\textbf{To find:}

\text{The value of $p^3+8r$}

\textbf{Solution:}

\text{We apply long division to solve this problem}

\begin{array}{r|lllllllll}&x^2&+&\frac{p}{2}x&-&\frac{p^2}{8}&&&&\\\cline{2-10}x^2&x^4&+&px^3&+&0x^2&+&r\,x&+&s^2\\&x^4&&&&&&&&\\\cline{2-10}\\2x^2+\frac{p}{2}x&&&px^3&+&0x^2&&&&\\&&&px^3&+&\frac{p^2}{4}x^2&&&&\\\cline{2-10}2x^2+px-\frac{p^2}{8}&&&&&\frac{-p^2}{4}x^2&+&r\,x&+&s^2\\&&&&&\frac{-p^2}{4}x^2&-&\frac{p^3}{8}x&+&\frac{p^3}{64}\\\cline{2-10}&&&&&&&(\frac{p^3}{8}+r)x&+&(s^2-\frac{p^3}{64})\\\cline{2-10}\end{array}

\text{Since $x^4+px^3+rx+s^2$ is a perfect square, the remainder is zero}

\implies\,\frac{p^3}{8}+r=0\;\text{and}\;s^2-\frac{p^3}{64}=0

\implies\,\frac{p^3+8r}{8}=0

\implies\bf\,p^3+8r=0

\therefore\textbf{The value of $\bf\,p^3+8r$ is 0}

Find more:

By what least number should we divide 10224 to make it perfect square

https://brainly.in/question/11881441

What should be subtracted from the polynomial x + 2x + 8x +22x + 18 so that it is completely divisible

by x2 + 6 ?​

https://brainly.in/question/15005827

Similar questions