Math, asked by khawer709, 5 hours ago

x^4+x^3-4x^2+x+1=0 solve by using qyadratic eqyations​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: {x}^{4} +  {x}^{3} -  {4x}^{2} + x + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{4} +  {x}^{3} \red{ -  {2x}^{2} -  {2x}^{2}}  + x + 1 = 0

can be re-arranged as

\rm :\longmapsto\: {x}^{4} -  {2x}^{2} + 1 +  {x}^{3} -  {2x}^{2} + x = 0

\rm :\longmapsto\: [{x}^{4} -  {2x}^{2} + 1 ]+  x[{x}^{2} -  {2x}^{} + 1] = 0

\rm :\longmapsto\: [{ {(x}^{2} )}^{2} -  {2x}^{2} +  {1}^{2}  ]+  x[{x}^{2} -  {2x}^{} +  {1}^{2} ] = 0

We know,

\rm :\longmapsto\:\boxed{\tt{  {x}^{2}  - 2xy +  {y}^{2}  =  {(x - y)}^{2}}}

So, using this identity, we get

\rm :\longmapsto\: {( {x}^{2} - 1) }^{2}  + x {(x - 1)}^{2}  = 0

We know,

\rm :\longmapsto\:\boxed{\tt{  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

So, using this identity, we get

\rm :\longmapsto\: {[(x - 1)(x + 1)] }^{2}  + x {(x - 1)}^{2}  = 0

\rm :\longmapsto\: {(x - 1)^{2} (x + 1) }^{2}  + x {(x - 1)}^{2}  = 0

\rm :\longmapsto\: {(x - 1)}^{2}[ {(x + 1)}^{2}  + x] = 0

\rm :\longmapsto\: {(x - 1)}^{2}[ {x}^{2} + 1 + 2x   + x] = 0

\rm :\longmapsto\: {(x - 1)}^{2}[ {x}^{2} + 3x   + 1] = 0

\rm :\longmapsto\:x = 1,1 \: or \:  {x}^{2}  + 3x + 1 = 0

Consider,

\rm :\longmapsto \:  {x}^{2}  + 3x + 1 = 0

To find the roots, we have to use Quadratic Formula.

So, using Quadratic formula, we get

\rm :\longmapsto\:x = \dfrac{ - 3 \:  \pm \:  \sqrt{ {(3)}^{2}  - 4(1)(1)} }{2(1)}

\rm :\longmapsto\:x = \dfrac{ - 3 \:  \pm \:  \sqrt{ 9 - 4} }{2}

\rm :\longmapsto\:x = \dfrac{ - 3 \:  \pm \:  \sqrt{5} }{2}

So, Solution of

\rm :\longmapsto\: {x}^{4} +  {x}^{3} -  {4x}^{2} + x + 1 = 0

is

\rm\implies \:\boxed{\tt{ x = 1, \: 1, \:  \frac{ - 3 +  \sqrt{5} }{2}, \:  \frac{ - 3 -  \sqrt{5} }{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Explore More :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Answered by prabhakardeva657
13

Step-by-step explanation:

x⁴ + x³ - 4x² + x + 1 = 0

Writes x³ as a sum.

x⁴ - x³ + 2x³ - 4x² + x + 1 = 0

Write -4x² and x as a sum.

x⁴ - x³ + 2x³ - + 1 = 0

Factor out: -

x³( x -1) + 2x³ - 2x² - 2x² + 2x - x + 1 = 0

x³( x -1) + 2x² ( x - 1) - 2x² + 2x - x + 1 = 0

x³( x -1) + 2x² ( x - 1) - 2x ( x - 1 ) - x + 1 = 0

x³( x -1) + 2x² ( x - 1) - 2x ( x - 1 ) - ( x - 1 ) = 0

Factor out (x - 1) from the expression.

( x - 1 ) ( x³ + 2x² - 2x - 1 ) = 0

Use identity :- a³ - b³ = ( a - ) ( a² + ab + b²).

( x - 1 ) ( ( x - 1 ) ( x² + x + 1 ) + 2x² - 2x ) = 0

Factor out 2x from the expression.

( x - 1) ( ( x - 1) ( x² + x + 1) + 2x ( x - 1)) = 0

Factor out ( x - 1) from the expression.

( x - 1) ( x - 1) ( x² + x + 1 + 2x) = 0

Collect like terms.

( x - 1) ( x - 1) ( x² + 3x + 1) = 0

Write the repeated multiplication in exponential form.

( x - 1) ² ( x ² + 3x - 1) = 0

When the products of factors equal zero, at least one factor is 0.

( x - 1 )² = 0

( x ² + 3x - 1) = 0

Solve for x.

x = 1

 \sf \small x \:  =  \frac{ - 3 +  \sqrt{5} }{2} \:

 \sf \small x \:  =  \frac{ - 3 \:  -  \sqrt{5} }{2} \:

The equation has three solutions.

x_1 = 1 ,  x_2 =  \sf \frac{ - 3 +  \sqrt{5} }{2} and  \sf x_3 =  \sf \frac{ - 3 +  \sqrt{5} }{2}

Similar questions