Math, asked by suga9, 1 year ago

x+4/x-3< 2 is satisfied when x satisfies {a} (-~,3)U(10,~) {b}(3,10) {c}(-~,3)U[10,~) {d}N.O.T​

Attachments:

Answers

Answered by MaheswariS
10

\underline{\textsf{Given:}}

\mathsf{\dfrac{x+4}{x-3}\,&lt;\,2}

\underline{\textsf{To find:}}

\textsf{Solution set of the given inequality}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{\dfrac{x+4}{x-3}\,&lt;\,2}

\mathsf{\dfrac{x+4}{x-3}-2&lt;\,0}

\mathsf{\dfrac{x+4-2(x-3)}{x-3}\,&lt;\,0}

\mathsf{\dfrac{x+4-2x+6}{x-3}\,&lt;\,0}

\mathsf{\dfrac{10-x}{x-3}\,&lt;\,0}

\textsf{Multiplying minus on bothsides, we get}

\mathsf{\dfrac{x-10}{x-3}\,&gt;\,0}

\left\begin{array}{|c|c|c|c|}\cline{1-4}&amp;&amp;&amp;\\Interval&amp;x-3&amp;x-10&amp;\dfrac{x-10}{x-3}\\&amp;&amp;&amp;\\\cline{1-4}&amp;&amp;&amp;\\(-\infty,3)&amp;-&amp;-&amp;+\\&amp;&amp;&amp;\\(3,10)&amp;-&amp;+&amp;-\\&amp;&amp;&amp;\\(10,\infty)&amp;+&amp;+&amp;+\\&amp;&amp;&amp;\\\cline{1-4}\end{array}}

\textsf{From the table it is clear that,}

\mathsf{The\,solution\;set\;is\;(-\infty,3)\,\cup\,(10,\infty)}

\therefore\mathsf{Option\;(a)\;is\;correct}

Answered by abhi569
4

(x+4)/(x-3)<2 is satisfied when x satisfies

(a) (-∞, 3) U (10, ∞) (b) (-∞, 3) U [10, ∞)

(c) (3,10) (d) NOT

Step-by-step explanation:

=> (x + 4)/(x - 3) < 2

=> (x + 4)/(x - 3) - 2 < 0

=> {x + 4 - 2(x - 3)}/(x - 3) < 0

=> (x + 4 - 2x + 6)/(x - 3) < 0

=> (10 - x)/(x - 3) < 0 , it means one of them must be -ve(both must be of opposite signs)

There are two possible ways to satisfy this:

Case 1:

(10 - x) > 0 then (x - 3) < 0

10 > x & 3 > x

Case 2:

(10 - x) < 0 then (x - 3) > 0

10 < x & 3 < x

Combine both the cases,

x can be greater than 10 and lesser than 3.

x belongs to (- ∞, 3) U (10, + ∞)

Option(1) is correct.

Similar questions