Math, asked by Aklu, 10 months ago

x+4÷x-4 + x-2÷x-3 = 19÷3​

Answers

Answered by amitkr132005
1

Step-by-step explanation:

I hope this will help you

Attachments:
Answered by mysticd
4

 Given \:\frac{x+4}{x-4} + \frac{x-2}{x-3} = \frac{19}{3}

 \implies \frac{(x+4)(x-3)+(x-2)(x-4)}{(x-4)(x-3)} = \frac{19}{3}

 \implies \frac{ x^{2}+x-12+x^{2}-6x+8}{x^{2}-7x+12} = \frac{19}{3}

 \implies \frac{2x^{2}-5x-4}{x^{2}-7x+12} = \frac{19}{3}

 \implies 3(2x^{2}-5x-4) =19(x^{2}-7x+12)

 \implies 6x^{2} - 15x - 12 = 19x^{2} - 133x + 228

 \implies 19x^{2} - 133x + 228 - 6x^{2} + 15x + 12 = 0

 \implies 13x^{2} - 118x + 240 = 0

/* Compare above equation with ax²+bx+c = 0 , we get */

 a = 13, b = -118 \:and \: c = 240

 Discriminant (D) = b^{2} -4ac

 = (-118)^{2} - 4 \times 13 \times 240

 = 1444

/* By Quadratic Formula */

 x = \frac{-b \pm \sqrt{D}}{2a}

 = \frac{ -(-118) \pm \sqrt{1444}}{2\times 13}

 = \frac{118\pm38}{26}

 x = \frac{118+38}{26} \:or \: \frac{118-38}{26}

\implies x = \frac{156}{26} \: Or \: x = \frac{80}{26}

 \implies x = 6 \:Or \: x = \frac{40}{13}

•••♪

Similar questions