Math, asked by nuzhatabidi480, 1 year ago

X+4/x-4 - x-4/x+4 = 1 - x square / x square-16​

Answers

Answered by Sharad001
62

Question :-

solve for x,

 \sf{ \frac{x + 4}{ x - 4}  -  \frac{x - 4}{x + 4}  =  \frac{1 -  {x}^{2} }{ {x}^{2} - 16 } } \\

Answer :-

\sf{x \:  =  \frac{ - 16 +  \sqrt{148} }{2}  \: or \:  \frac{ - 16 -  \sqrt{148} }{2} } \:  \\

Formula used :-

  \star \: \sf{ {(x + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy} \\  \\  \star  \sf{ {( x - y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy} \\  \\ \star  \: \sf{ {x}^{2}  -  {y}^{2}  = (x - y)(x + y)} \\

__________________________

Solution :-

 \rightarrow \: \sf{ \frac{x + 4}{ x - 4}  -  \frac{x - 4}{x + 4}  =  \frac{1 -  {x}^{2} }{ {x}^{2} - 16 } } \\  \:  \\  \rightarrow \sf{ \frac{ {(x + 4)}^{2}  -  {(x - 4)}^{2} }{(x + 4)(x - 4)}  = \frac{1 -  {x}^{2} }{ {x}^{2} - 16 }} \\  \\  \rightarrow \sf{ \frac{ {x}^{2} + 16 + 8x -  {x}^{2}  - 16 + 8x }{ {x}^{2}  - 16}  = \frac{1 -  {x}^{2} }{ {x}^{2} - 16 } }\:  \\  \\  \rightarrow  \sf{ 16x = 1 -  {x}^{2} } \\  \\  \rightarrow \sf{ {x}^{2}  + 16x - 1 = 0 }\\  \\  \rightarrow \sf{x \:  =  \frac{ - 16 +  \sqrt{144 + 4} }{2} or \frac{ - 16 -  \sqrt{144 + 4} }{2} } \\  \\  \rightarrow \sf{x \:  =  \frac{ - 16 +  \sqrt{148} }{2}  \: or \:  \frac{ - 16 -  \sqrt{148} }{2} }

_________________________

Similar questions