x^4-y^4+x^2-y^2 factorise to the following polynomials
Answers
Answered by
1
Answer:
Step-by-step explanation:
Answer:
x^{4}-y^{4}+x^{2}-y^{2}\\=(x+y)(x-y)[(x^{2}+y^{2}+1]
Step-by-step explanation:
x^{4}-y^{4}+x^{2}-y^{2}\\=[(x^{2})^{2}-(y^{2})^{2})]+x^{2}-y^{2}\\=(x^{2}+y^{2})(x^{2}-y^{2})+x^{2}-y^{2}
\* By algebraic identity :
\boxed {a^{2}-b^{2}=(a+b)(a-b)} *\
=(x^{2}-y^{2})[(x^{2}+y^{2}+1]
=(x+y)(x-y)[(x^{2}+y^{2}+1]
Therefore,
x^{4}-y^{4}+x^{2}-y^{2}\\=(x+y)(x-y)[(x^{2}+y^{2}+1]
•••♪
Similar questions