X^4-(y+z)^4 factorise the above
Answers
Answer:
[ x² + y² + z² + 2yz ] [ x + y + z ] [ x - y - z ]
Step-by-step explanation:
Given : x⁴ - (y + z)⁴
We can write this as :
➾ (x²)² - [(y + z)²]²
Identity : a² - b² = (a + b)(a - b)
Here, a = x², b = (y + z)²
➾ [ x² + (y + z)² ] [ x² - (y + z)² ]
➾ [ x² + (y + z)² ] [ x² - (y + z)² ]
We can write this as :
➾ [ x² + (y + z)² ] [ (x)² - (y + z)² ]
Identity : a² - b² = (a + b)(a - b)
Here, a = x, b = y + z
➾ [ x² + (y + z)² ] [ (x) + (y + z) ] [ (x) - (y + z) ]
➾ [ x² + (y + z)² ] [ x + y + z ] [ x - y - z ]
➾ [ x² + (y + z)² ] [ x + y + z ] [ x - y - z ]
Identity : (a + b)² = a² + b² + 2ab
Here, a = y, b = z
➾ [ x² + (y)² + (z)² + 2(y)(z) ] [ x + y + z ] [ x - y - z ]
➾ [ x² + y² + z² + 2yz ] [ x + y + z ] [ x - y - z ]
❥
x⁴ - (y+z)⁴ [ factorise]
❥
x⁴ - (y+z)⁴
[ We can write it (x²)² - {(y+z)²}²]
→ (x²)² - {(y+z)²}²
[ Apply a² - b² = (a+b)(a-b)]
→{x² + (y+z)²} {x² - (y+z)²}
[ Apply ★(a+b)² =a²+b²+2ab ★ a² - b² = (a+b)(a-b)]
→(x²+y²+z²+2yz) (x+y+z)(x-y-z)
❥
(x²+y²+z²+2yz) (x+y+z)(x-y-z)