Math, asked by Anonymous, 1 month ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​​​​​​​​​​​​​​​​

Attachments:

Answers

Answered by pratibha23pr
0

Answer:

EVALUATE

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ

❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ

❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ

Attachments:
Answered by Sahan677
17

\lim_{x \to \infty} \frac{2 x^{3}}{2 x^{2} + 2}

The limit of a product/quotient is the product/quotient of limits:

\color{red}{\lim_{x \to \infty} \frac{2 x^{3}}{2 x^{2} + 2}} = \color{red}{\lim_{x \to \infty} 2 \lim_{x \to \infty} \frac{x^{3}}{2 x^{2} + 2}}

The limit of a constant is equal to the constant:

 \lim_{x \to \infty} \frac{x^{3}}{2 x^{2} + 2} \color{red}{\lim_{x \to \infty} 2} = \lim_{x \to \infty} \frac{x^{3}}{2 x^{2} + 2} \color{red}{\left(2\right)}

Apply the constant multiple rule

  \bold{\lim_{x \to \infty} c f{\left(x \right)} = c \lim_{x \to \infty} f{\left(x \right)} \:  with  \: c=\frac{1}{2}  \: and \:  f{\left(x \right)} = \frac{x^{3}}{x^{2} + 1}}

2 \: \color{red}{\lim_{x \to \infty} \frac{x^{3}}{2 x^{2} + 2}} = 2 \color{red}{\left(\frac{\lim_{x \to \infty} \frac{x^{3}}{x^{2} + 1}}{2}\right)}

Multiply and divide by x^{2}

\color{red}{\lim_{x \to \infty} \frac{x^{3}}{x^{2} + 1}} = \color{red}{\lim_{x \to \infty} \frac{x^{2} \frac{x^{3}}{x^{2}}}{x^{2} \frac{x^{2} + 1}{x^{2}}}}

Divide:

\color{red}{\lim_{x \to \infty} \frac{x^{2} \frac{x^{3}}{x^{2}}}{x^{2} \frac{x^{2} + 1}{x^{2}}}} = \color{red}{\lim_{x \to \infty} \frac{x}{1 + \frac{1}{x^{2}}}}

The limit of the quotient is the quotient of limits:

\color{red}{\lim_{x \to \infty} \frac{x}{1 + \frac{1}{x^{2}}}} = \color{red}{\frac{\lim_{x \to \infty} x}{\lim_{x \to \infty}\left(1 + \frac{1}{x^{2}}\right)}}

The function grows without a bound:

\lim_{x \to \infty} x = \infty

The limit of a sum/difference is the sum/difference of limits:

\infty \color{red}{\lim_{x \to \infty}\left(1 + \frac{1}{x^{2}}\right)}^{-1} = \infty \color{red}{\left(\lim_{x \to \infty} 1 + \lim_{x \to \infty} \frac{1}{x^{2}}\right)}^{-1}

The limit of a constant is equal to the constant:

\infty \left(\lim_{x \to \infty} \frac{1}{x^{2}} + \color{red}{\lim_{x \to \infty} 1}\right)^{-1} = \infty \left(\lim_{x \to \infty} \frac{1}{x^{2}} + \color{red}{1}\right)^{-1}

The limit of a quotient is the quotient of limits:

\infty \left(1 + \color{red}{\lim_{x \to \infty} \frac{1}{x^{2}}}\right)^{-1} = \infty \left(1 + \color{red}{\frac{\lim_{x \to \infty} 1}{\lim_{x \to \infty} x^{2}}}\right)^{-1}

The limit of a constant is equal to the constant:

\infty \left(1 + \frac{\color{red}{\lim_{x \to \infty} 1}}{\lim_{x \to \infty} x^{2}}\right)^{-1} = \infty \left(1 + \frac{\color{red}{1}}{\lim_{x \to \infty} x^{2}}\right)^{-1}

Constant divided by a very big number equals 0

\infty \left(1 + \color{red}{1 \frac{1}{\lim_{x \to \infty} x^{2}}}\right)^{-1} = \infty \left(1 + \color{red}{\left(0\right)}\right)^{-1}

Therefore,

\lim_{x \to \infty} \frac{2 x^{3}}{2 x^{2} + 2} = \infty

Answer:

\lim_{x \to \infty} \frac{2 x^{3}}{2 x^{2} + 2}=\infty

Similar questions