Math, asked by Anonymous, 3 days ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Attachments:

Answers

Answered by anindyaadhikari13
17

\textsf{\large{\underline{Solution}:}}

We have to evaluate the given integral.

 = \displaystyle \sf \int x {(5 {x}^{2}  + 3)}^{5} dx

Let us assume that:

 \sf:\longmapsto u =  5{x}^{2}  + 3

 \sf:\longmapsto du =  10x \: dx

 \sf:\longmapsto  \dfrac{1}{10} du =x \: dx

Therefore, the integral becomes:

 = \displaystyle \sf \int \frac{ {u}^{5} }{10} du

 = \displaystyle \sf  \dfrac{1}{10} \int {u}^{5} du

 = \displaystyle \sf  \dfrac{1}{10}  \times  \dfrac{ {u}^{5 + 1} }{5 + 1}  + C

 = \displaystyle \sf \dfrac{ {u}^{6} }{60}  + C

Substitute back u = 5x² + 3, we get:

 = \displaystyle \sf \dfrac{ {(5 {x}^{2} + 3 )}^{6} }{60}  + C

Therefore:

 \displaystyle \sf: \longmapsto  \int x {(5 {x}^{2}  + 3)}^{5} dx =  \dfrac{ {(5 {x}^{2}  + 3)}^{6} }{60}  + C

\textsf{\large{\underline{Additional Information}:}}

\boxed{\begin{array}{c|c}\bf f(x)&\bf\displaystyle\int\rm f(x)\:dx\\ \\ \frac{\qquad\qquad}{}&\frac{\qquad\qquad}{}\\ \sf k&\sf kx+C\\ \\ \sf sin(x)&\sf-cos(x)+C\\ \\ \sf cos(x)&\sf sin(x)+C\\ \\ \sf{sec}^{2}(x)&\sf tan(x)+C\\ \\ \sf{cosec}^{2}(x)&\sf-cot(x)+C\\ \\ \sf sec(x)\  tan(x)&\sf sec(x)+C\\ \\ \sf cosec(x)\ cot(x)&\sf-cosec(x)+C\\ \\ \sf tan(x)&\sf log(sec(x))+C\\ \\ \sf\dfrac{1}{x}&\sf logx+C\\ \\ \sf{e}^{x}&\sf{e}^{x}+C\\ \\ \sf x^{n},n\neq-1&\sf\dfrac{x^{n+1}}{n+1}+C\end{array}}


anindyaadhikari13: Thanks for the brainliest :)
Answered by Sahan677
9

\int{x \left(5 x^{2} + 3\right)^{5} d x}

Let \:  u=5 x^{2} + 3

 \color{red}Then  \: du=\left(5 x^{2} + 3\right)^{\prime }dx = 10 x  \: dx \: and \: we \: have \: that \: x \: dx =  \frac{du}{10}

The integral can be rewritten as

\color{red}{\int{x \left(5 x^{2} + 3\right)^{5} d x}} = \color{red}{\int{\frac{u^{5}}{10} d u}}

Apply the constant multiple rule

 \small{ \bold \red{\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du \:  with  \: c=\frac{1}{10}  \: and \:  f{\left(u \right)} = u^{5}:}}

\color{red}{\int{\frac{u^{5}}{10} d u}} = \color{red}{\left(\frac{\int{u^{5} d u}}{10}\right)}

Apply the power rule

{ \bold \red{\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} \left(n \neq -1 \right) with \:  n=5:}}

 \bold \red{\frac{\color{red}{\int{u^{5} d u}}}{10}=\frac{\color{red}{\frac{u^{1 + 5}}{1 + 5}}}{10}=\frac{\color{red}{\left(\frac{u^{6}}{6}\right)}}{10}}

 \bold \red{Recall \:  that \:  u=5 x^{2} + 3}

 \bold \red{\frac{\color{red}{u}^{6}}{60} = \frac{\color{red}{\left(5 x^{2} + 3\right)}^{6}}{60}}

Therefore,

 \bold \red{\int{x \left(5 x^{2} + 3\right)^{5} d x} = \frac{\left(5 x^{2} + 3\right)^{6}}{60}}

Add the constant of integration:

 \bold \red{\int{x \left(5 x^{2} + 3\right)^{5} d x} = \frac{\left(5 x^{2} + 3\right)^{6}}{60}+C}

Answer:

 \bold \red{\int{x \left(5 x^{2} + 3\right)^{5} d x}=\frac{\left(5 x^{2} + 3\right)^{6}}{60}+C}

Similar questions