Math, asked by Anonymous, 3 months ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Attachments:

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \displaystyle \: I =  \int^{\pi}_{0}  \left( \dfrac{x}{ \sin(x) + 1 }  \right)dx \:  \:  \:  \:  \:  \:  \: ...(1) \\

We know,

 \bigstar \:  \boxed{ \displaystyle \bf{ \int^{b}_{a}f(x) \: dx = \int^{b}_{a}f(a + b - x) \: dx  }}

So,

 \displaystyle \: I =  \int^{\pi}_{0}  \left( \dfrac{\pi - x}{ \sin(\pi - x) + 1 }  \right)dx

 \displaystyle \implies I =  \int^{\pi}_{0}  \left( \dfrac{\pi - x}{ \sin( x) + 1 }  \right)dx  \:  \:  \:  \:  \:  \:  \: ...(2)\\

Adding (1) and (2),

 \displaystyle \implies 2I =  \int^{\pi}_{0}  \left( \dfrac{ x}{ \sin( x) + 1 }  \right)dx  + \int^{\pi}_{0}  \left( \dfrac{\pi - x}{ \sin( x) + 1 }  \right)dx\\

 \displaystyle \implies 2I =  \int^{\pi}_{0}   \left \{ \dfrac{ x}{ \sin( x) + 1 }  +    \dfrac{\pi - x}{ \sin( x) + 1 }  \right \}dx\\

 \displaystyle \implies 2I =  \int^{\pi}_{0}   \left \{   \dfrac{\pi }{ \sin( x) + 1 }  \right \}dx\\

 \displaystyle \implies 2I = \pi \int^{\pi}_{0}   \left \{   \dfrac{1 }{ \sin( x) + 1 }  \right \}dx\\

 \displaystyle \implies 2I = \pi \int^{ \pi}_{0}    \dfrac{1 }{ \sin( x) + 1 }  dx\\

 \displaystyle \implies2 I = \pi \int^{ \pi}_{0}    \dfrac{1 -  \sin(x)  }{  \{\sin( x) + 1  \} \{ 1 -  \sin(x) \}}  dx\\

 \displaystyle \implies 2I = \pi \int^{ \pi}_{0}    \dfrac{1 -  \sin(x)  }{ 1 -  \sin^{2} (x)}  dx\\

 \displaystyle \implies 2I = \pi \int^{ \pi}_{0}    \dfrac{1 -  \sin(x)  }{   \cos^{2} (x)}  dx\\

 \displaystyle \implies 2I = \pi \int^{ \pi}_{0}    \dfrac{1 }{   \cos^{2} (x)}  dx -\pi \int^{ \frac{\pi}{2}}_{0}    \dfrac{ \sin(x)  }{   \cos^{2} (x)}  dx \\

 \displaystyle \implies 2I = \pi \int^{ \pi}_{0}    \sec^{2} (x) \:  dx -\pi \int^{ \frac{\pi}{2}}_{0}   \sec(x) \tan(x)    \: dx \\

 \displaystyle \implies 2I = \pi   [  \tan(x) ] ^{ \pi}_{0}     -\pi  [ \sec(x) ] ^{ \pi}_{0}         \\

 \displaystyle \implies 2I = \pi   [  \tan(\pi) -  \tan(0)  ]      -\pi  [ \sec(\pi) -  \sec(0)  ]       \\

 \displaystyle \implies 2I = \pi   [  0-  0 ]      -\pi  [ - 1 - 1  ]       \\

 \displaystyle \implies 2I =    -\pi ( - 2 )     \\

 \displaystyle \implies 2I =    2\pi     \\

 \displaystyle \implies I =    \pi     \\

Answered by sajan6491
21

 \displaystyle \bold \red{\int_{0}^{\pi}\left( \frac{x}{\sin{\left(x \right)} + 1} \right)dx}

First, calculate the corresponding indefinite integral:

\displaystyle\bold\red{\int{\frac{x}{\sin{\left(x \right)} + 1} d x}}

\bold\red{\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}}

 \displaystyle \bold \red{ \int{\frac{x}{\sin{\left(x \right)} + 1} d x}} \\  \bold \red{=\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}}

According to the Fundamental Theorem of Calculus,

 \displaystyle \bold \red{\int_a^b F(x) dx=f(b)-f(a), }

so just evaluate the integral at the endpoints, and that's the answer.

 \bold \red{\left(\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}\right)}

 \bold \red{|_{\left(x=\pi\right)}=\pi}

 \bold \red{\left(\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}\right)}

 \bold \red{|_{\left(x=0\right)}=0}

 \bold \red{ \int_{0}^{\pi}\left( \frac{x}{\sin{\left(x \right)} + 1} \right)dx }\\ \bold \red{ =\left(\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}\right)} \\  \bold \red{|_{\left(x=\pi\right)}} \\  \bold \red{-\left(\frac{- 2 x + \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(x + \ln{\left(\cos{\left(x \right)} + 1 \right)} + 2 \ln{\left(\left|{\tan{\left(\frac{x}{2} \right)} + 1}\right| \right)} - \ln{\left(2 \right)}\right)}{\tan{\left(\frac{x}{2} \right)} + 1}\right)}

 \bold \red{|_{\left(x=0\right)}=\pi}

 \bold \red{\int_{0}^{\pi}\left( \frac{x}{\sin{\left(x \right)} + 1} \right)dx=\pi}

Similar questions