Math, asked by Anonymous, 6 hours ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​

Attachments:

Answers

Answered by sriniwasthirandas
0

Answer:

1n rase to 5 upon 2n

Step-by-step explanation:

first add numerator and denominator then you get

3n rase to 5 upon 6n then,divide it you will get your

1n rase to 5 upon 2n

Answered by mathdude500
6

Given Question

Evaluate the following

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}  }{ {1}^{n}  +  {2}^{n}  +  {3}^{n}  +  -  -  -  +  {n}^{n} }

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}  }{ {1}^{n}  +  {2}^{n}  +  {3}^{n}  +  -  -  -  +  {n}^{n} }

Consider, Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Its form an GP series with first term a, common ratio r and number of terms n respectively.

So, Using Sum of n terms of GP we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

can be further rewritten as

\rm \:  =  \: \dfrac{{n}^{n}  - 1}{\dfrac{n - 1}{n} }

\rm \:  =  \: \dfrac{{n}^{n}  - 1}{1 - \dfrac{1}{n} }

Thus,

\rm \: n +  {n}^{2} +  {n}^{3} +  -  -  +  {n}^{n} \: =\: \dfrac{{n}^{n}  - 1}{1 - \dfrac{1}{n} }

Now, Consider Denominator

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n} +  -  -  -  +  {n}^{n}

\rm = {1}^{n} +  {2}^{n} +  {3}^{n} +  -  -  +  {(n - 2)}^{n} +  {(n - 1)}^{n} +  {n}^{n}

\rm =  {n}^{n}\bigg[1 +  {\bigg[\dfrac{n - 1}{n} \bigg]}^{n} +  {\bigg[\dfrac{n - 2}{n} \bigg]}^{n} +  -  -  -  +  {\bigg[\dfrac{1}{n} \bigg]}^{n}

\rm =  {n}^{n}\bigg[1 +  {\bigg[1 - \dfrac{ 1}{n} \bigg]}^{n} +  {\bigg[1 - \dfrac{2}{n} \bigg]}^{n} +  -  -  -  +  {\bigg[\dfrac{1}{n} \bigg]}^{n}

Now, Consider the given expression

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty} \frac{n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}  }{ {1}^{n}  +  {2}^{n}  +  {3}^{n}  +  -  -  -  +  {n}^{n} }

\rm = \displaystyle\lim_{n \to \infty}\dfrac{\dfrac{{n}^{n}  - 1}{1 - \dfrac{1}{n} }}{{n}^{n}\bigg[1 +  {\bigg[1 - \dfrac{ 1}{n} \bigg]}^{n} +  {\bigg[1 - \dfrac{2}{n} \bigg]}^{n} +  -  -  -  +  {\bigg[\dfrac{1}{n} \bigg]}^{n}}

can be rewritten as

\rm = \displaystyle\lim_{n \to \infty}\dfrac{\dfrac{1  -  \dfrac{1}{ {n}^{n} } }{1 - \dfrac{1}{n} }}{\bigg[1 +  {\bigg[1 - \dfrac{ 1}{n} \bigg]}^{n} +  {\bigg[1 - \dfrac{2}{n} \bigg]}^{n} +  -  -  -  +  {\bigg[\dfrac{1}{n} \bigg]}^{n}}

We know

\boxed{\tt{ \displaystyle\lim_{x \to \infty} {\bigg[1 + \dfrac{k}{x} \bigg]}^{x}  =  {e}^{k} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{\dfrac{1 - 0}{1 - 0} }{1 + {e}^{ - 1} +  {e}^{ - 2} +  -  -  -  -  \infty  }

\rm \:  =  \: \dfrac{1}{1 + {e}^{ - 1} +  {e}^{ - 2} +  -  -  -  -  \infty  }

Now, in denominator its an infinite GP series with First term 1 and common ratio 1/e ( <1), so using sum of infinite GP series we get

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

Hence,

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to \infty} \frac{n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}  }{ {1}^{n}  +  {2}^{n}  +  {3}^{n}  +  -  -  -  +  {n}^{n} } =  \frac{e - 1}{e} \: }}


amansharma264: Excellent
pulakmath007: Brilliant
Similar questions