Math, asked by raghujavir00, 19 days ago

x = 4cos theeta - 5 sin theeta , y = 4sin theeta + 5cos théeta eliminate the theeta​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given that,

\rm \: x = 4cos\theta  - 5sin\theta  -  -  - (1)

and

\rm \: y = 4sin\theta  + 5cos\theta  -  -  - (2)

Now, Consider

\rm \:  {x}^{2}

\rm \:  =  \:  {(4cos\theta  - 5sin\theta )}^{2}

\rm \:  =  \:  {16cos}^{2}\theta  + 25 {sin}^{2}\theta  - 2 \times 4cos\theta  \times 5sin\theta

\rm \:  =  \:  {16cos}^{2}\theta  + 25 {sin}^{2}\theta  - 40sin\theta cos\theta

So,

\rm\implies \: {x}^{2}  =  \:  {16cos}^{2}\theta  + 25 {sin}^{2}\theta  - 40sin\theta cos\theta  -  - (3) \\

Now, Consider

\rm \:  {y}^{2}

\rm \:  =  \:  {(4sin\theta  + 5cos\theta )}^{2}

\rm \:  =  \:  {16sin}^{2}\theta  + 25 {cos}^{2}\theta  + 2 \times 4sin\theta  \times 5cos\theta

\rm \:  =  \:  {16sin}^{2}\theta  + 25 {cos}^{2}\theta  + 40sin\theta cos\theta

So,

\rm\implies \: {y}^{2}  =  \:  {16sin}^{2}\theta  + 25 {cos}^{2}\theta  + 40sin\theta cos\theta -  -  - (4) \\

On adding equation (3) and (4), we get

\rm \:  {x}^{2} +  {y}^{2}

\rm \:  =  \: 16( {sin}^{2}\theta  +  {cos}^{2}\theta ) + 25( {sin}^{2}\theta  +  {cos}^{2}\theta )

\rm \:  =  \: 16 \times 1 + 25 \times 1

\rm \:  =  \: 16 + 25

\rm \:  =  \: 41 \\

\rm\implies \: {x}^{2} +  {y}^{2} = 41 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by ItzDαrkHσrsє
3

\large\underline{\sf{SOLUTION-}}

We have,

  • x = 4cosθ - 5sinθ —— (1)
  • y = 4sinθ + 5cosθ —— (2)

Opening brackets by squaring,

x² = (4cosθ - 5sinθ)²

x² = 16cos²θ + 25sin²θ - 2 × 4cosθ × 5sinθ

x² = 16cos²θ + 25sin²θ - 40sinθcosθ

Opening brackets by squaring,

y² = (4sinθ + 5cosθ)²

y² = 16sin²θ + 25cos²θ + 2 × 4sinθ × 5cosθ

y² = 16sin²θ + 25cos²θ + 40sinθcosθ

Adding on both the sides,

x² + y² = 16 (sin²θ + cos²θ) + 25 (sin²θ + cos²θ)

x² + y² = 16 × 1 + 25 × 1 —— (sin²θ + cos²θ = 1)

x² + y² = 16 + 25

x² + y² = 41

Similar questions