x = 4cos theeta - 5 sin theeta , y = 4sin theeta + 5cos théeta eliminate the theeta
Answers
Given that,
and
Now, Consider
So,
Now, Consider
So,
On adding equation (3) and (4), we get
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1
We have,
- x = 4cosθ - 5sinθ —— (1)
- y = 4sinθ + 5cosθ —— (2)
Opening brackets by squaring,
x² = (4cosθ - 5sinθ)²
x² = 16cos²θ + 25sin²θ - 2 × 4cosθ × 5sinθ
x² = 16cos²θ + 25sin²θ - 40sinθcosθ
Opening brackets by squaring,
y² = (4sinθ + 5cosθ)²
y² = 16sin²θ + 25cos²θ + 2 × 4sinθ × 5cosθ
y² = 16sin²θ + 25cos²θ + 40sinθcosθ
Adding on both the sides,
x² + y² = 16 (sin²θ + cos²θ) + 25 (sin²θ + cos²θ)
x² + y² = 16 × 1 + 25 × 1 —— (sin²θ + cos²θ = 1)
x² + y² = 16 + 25
x² + y² = 41