Math, asked by jaitadutta895, 10 months ago

X = (√5+1)/(√5-1) Y = (√5-1)/(√5+1)then, What is the value of (x²+3xy+y²)/(x²-3xy+y²)​

Answers

Answered by amikkr
0

The value of (x²+3xy+y²)/(x²-3xy+y²) is (\sqrt{5} - 1) .

  • We have X = (√5+1)/(√5-1) and Y = (√5-1)/(√5+1).
  • We have to find the value of (x²+3xy+y²)/(x²-3xy+y²).

We simplify the expression first,

\frac{x^{2} + 3xy + y^{2} }{x^{2} - 3xy + y^{2}}

= \frac{x^{2} + 2xy + y^{2} + xy }{x^{2} - 2xy + y^{2} - xy}

= \frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy}

  • We have to find the value of \frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy}
  • Now we calculate the value of xy , {(x+y)}^{2} and {(x-y)}^{2}.

xy = (\frac{\sqrt{5}+1}{\sqrt{5}-1})(\frac{\sqrt{5}-1}{\sqrt{5}+1})

xy = 1

  • Now, {(x+y)}^{2} = (\frac{\sqrt{5}+1}{\sqrt{5}-1}) + (\frac{\sqrt{5}-1}{\sqrt{5}+1})

{(x+y)}^{2} = \frac{{(\sqrt{5}+1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)} + \frac{{(\sqrt{5}-1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

{(x+y)}^{2} = \frac{{(\sqrt{5}+1)}^2+ {(\sqrt{5}-1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

{(x+y)}^{2} = \frac{(5 + 2\sqrt{5}+ 1 )+ (5 - 2\sqrt{5}+ 1) }{{\sqrt{5} }^{2} - 1^{2} }

{(x+y)}^{2} = \frac{12}{4} = 3

{(x+y)}^{2} = 3

  • Similarly, {(x-y)}^{2} = (\frac{\sqrt{5}+1}{\sqrt{5}-1}) - (\frac{\sqrt{5}-1}{\sqrt{5}+1})

{(x-y)}^{2} = \frac{{(\sqrt{5}+1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)} - \frac{{(\sqrt{5}-1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

{(x-y)}^{2} = \frac{{(\sqrt{5}+1)}^2 - {(\sqrt{5}-1)}^2}{(\sqrt{5}-1)(\sqrt{5}+1)}

{(x-y)}^{2} = \frac{(5 + 2\sqrt{5}+ 1 ) - (5 - 2\sqrt{5}+ 1) }{{\sqrt{5} }^{2} - 1^{2} }

{(x-y)}^{2} = \frac{4\sqrt{5}}{4} = \sqrt{5}

{(x-y)}^{2} = \sqrt{5}

  • Now, \frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{3 + 1 }{\sqrt{5} - (1)}

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{4}{\sqrt{5} - 1}

Now, we normalize the denominator,

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{4}{\sqrt{5} - 1} × \frac{\sqrt{5} + 1}{\sqrt{5} + 1}

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{4 (\sqrt{5} - 1)}{(\sqrt{5} - 1)(\sqrt{5} + 1)}

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{4 (\sqrt{5} - 1)}{{(\sqrt{5} )}^{2} - 1^{2} }

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = \frac{4 (\sqrt{5} - 1)}{4}

\frac{{(x+y)}^2 + xy }{{(x-y)}^2 - xy} = (\sqrt{5} - 1)

Similar questions