Math, asked by Chris8163, 1 month ago

X^5/(1-x^3) ^1/3 integration

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have ,

 \int \frac{ {x}^{5} }{(1 -  {x}^{3})^{ \frac{1}{3} }  } dx \\

Let \:  \: 1 -  {x}^{3}  =  {t}^{3}  \\  \implies - 3 {x}^{2} dx = 3 {t}^{2} dt \\  \implies {x}^{2} dx =  -  {t}^{2} dt \:  \:  \:  \:  \:

so,

 \int \frac{ {x}^{3} . {x}^{2} dx}{(1 -  {x}^{3})^{ \frac{1}{3} }  } \\

 = -   \int \frac{ (1 - {t}^{3} ). {t}^{2} dt}{( {t}^{3})^{ \frac{1}{3} }  } \\

 = -   \int  (1 - {t}^{3} )t dt\\

 = -   \int  (t - {t}^{4} ) dt\\

 =  -  \frac{ {t}^{2} }{2}  +  \frac{ {t}^{5} }{5}  + c \\

 =  -  {t}^{2}(  \frac{ 1 }{2}  +  \frac{ {t}^{3} }{5} ) + c \\

 =  -  {(1 -  {x}^{3}) }^{ \frac{2}{3} }(  \frac{ 1 }{2}  +  \frac{1 -  {x}^{3} }{5} ) + c \\

Similar questions