Math, asked by TheMarksman, 1 year ago

x= √5+2 then x^2+1/x^2=

Answers

Answered by umiko28
0

Answer:

ans=10+4√5/8+4√5

Step-by-step explanation:

(x^2+1)/X^2

{(2+√5)^2+1}/(2+√5)^2

(4+4√5+5+1)/4+4√5+5

(10+4√5)/9+4√5

Answered by Anonymous
1

 \sf\huge\  your \:answer=18\\\\\bf\  \: here \: x =  \sqrt{5} + 2 \\  \\  \therefore  \sf\ {x}^{2} =  {( \sqrt{5}  + 2)}^{2}  \\  \\  \sf\  \implies: {x}^{2}  =   {( \sqrt{5} )}^{2} + 2 \times  \sqrt{5} \times 2 +  {(2)}^{2}   \\  \\ \sf\  \implies: {x}^{2}  = 5 + 4 \sqrt{5}  + 4 \\  \\   \sf\boxed{  \bf\ \implies: {x}^{2}  = 9 + 4 \sqrt{5}  }  \\  \\  \tt\boxed{   \because \frac{1}{ {x}^{2} } =  \frac{1}{9 + 4 \sqrt{5} }  } \\  \\  \bf\ \: now  \:  \: ({x}^{2}  +  \frac{1}{ {x}^{2} })  \\  \\  \sf\  \implies: (9 + 4 \sqrt{5} )  + ( \frac{1}{9 + 4 \sqrt{5} }  ) \\  \\ \sf\  \implies: \frac{ {(9 + 4 \sqrt{5} )}^{2}  + 1}{9 + 4 \sqrt{5} }  \\  \\\sf\  \implies: \frac{ {( 9)}^{2} + 2 \times 9 \times 4 \sqrt{5} +  {(4 \sqrt{5} )}^{2} + 1 }{9 + 4 \sqrt{5} } \\  \\ \sf\  \implies: \frac{81 + 81 + 72 \sqrt{5} }{9 + 4 \sqrt{5} }   \\  \\ \sf\  \implies: \frac{162 + 72 \sqrt{5} }{9 + 4 \sqrt{5} } \\  \\ \sf\  \implies: \frac{18( \cancel{9 + 4 \sqrt{5} )}}{ \cancel{9 + 4 \sqrt{5}} }    \\  \\\sf\boxed{  \implies:18 }

Similar questions