Math, asked by kbheem121, 1 year ago

x=5-√21 then the value of √x÷(√(32-2x-√21))

Answers

Answered by newton82
13
 Given, \\ x=5- \sqrt{21} \\ = \frac{\sqrt{5-\sqrt{21}}}{ \sqrt{32-10+2\sqrt{21}-\sqrt{21}}} \\ \frac{\sqrt{5-\sqrt{21}}}{\sqrt{21}+1}

kbheem121: noo currect answer is( √7-√3)÷√2
Answered by harendrachoubay
9

The value of \dfrac{\sqrt{x}}{\sqrt{32-2x-\sqrt{21}}}=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{22+\sqrt{21}}}.

Step-by-step explanation:

We have,

x=5-\sqrt{21}

To find, the value of \dfrac{\sqrt{x}}{\sqrt{32-2x-\sqrt{21}}}=?

∴  \dfrac{\sqrt{x}}{\sqrt{32-2x-\sqrt{21}}}

Put x=5-\sqrt{21}, we get

=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{32-2(5-\sqrt{21})-\sqrt{21}}}

=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{32-10+2\sqrt{21}-\sqrt{21}}}

=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{32-10+\sqrt{21}}}

=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{22+\sqrt{21}}}

The value of \dfrac{\sqrt{x}}{\sqrt{32-2x-\sqrt{21}}}=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{22+\sqrt{21}}}

Hence, the value of \dfrac{\sqrt{x}}{\sqrt{32-2x-\sqrt{21}}}=\dfrac{\sqrt{5-\sqrt{21}}}{\sqrt{22+\sqrt{21}}}.

Similar questions