Math, asked by sumittripathi, 1 year ago

x= √5+√3/√5-√3 and y=√5-√3/√5+√3 find value x and y

Answers

Answered by 129Raj
1
x = 4 + √15
y = 4 - √15
please rationalise and after that you get ur answer

sumittripathi: please solve with step
129Raj: ok
Answered by DaIncredible
2
Hey friend,
Here is the answer you were looking for:
x  =  \frac{ (\sqrt{5}) + ( \sqrt{3})  }{( \sqrt{5}) - ( \sqrt{3} ) }  \\ on \: rationalizing \: we \: get \\  x =  \frac{( \sqrt{5} ) + ( \sqrt{3} )}{( \sqrt{5} ) - ( \sqrt{3)} }  \times  \frac{( \sqrt{5}) + ( \sqrt{3}  )}{( \sqrt{5} ) + ( \sqrt{3}) }  \\  \\  =  \frac{( \sqrt{ {5} } )^{2}  +( \sqrt{3} )^{2} + 2 \times  \sqrt{5  \times 3 }   }{( \sqrt{5} )^{2} - ( \sqrt{3} )^{2}  }  \\  \\  =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}  \\  \\  =  \frac{8 + 2 \sqrt{15} }{2}  \\  \\  = 4 +  \sqrt{15}  \\  \\ with \: same \: method \\ on \: rationalizing \: the \: value \: of \: y \: w \: get \\  \\ y =  \frac{( \sqrt{5} ) - ( \sqrt{3}) }{( \sqrt{5} ) + ( \sqrt{3} )}  \times  \frac{( \sqrt{5}) + ( \sqrt{3})  }{( \sqrt{5}) + ( \sqrt{3}  ) }  \\  \\ y =  \frac{( \sqrt{5})^{2}  + ( \sqrt{3})^{2} - 2 \times  \sqrt{5 \times 3}   }{( \sqrt{5} )^{2}  - ( \sqrt{3})^{2}  } \\  \\ y =  \frac{5 + 3 - 2 \sqrt{15} }{5 - 3}  \\  \\  y =  \frac{8 - 2 \sqrt{15} }{2}   \\ \\ y = 4 -  \sqrt{15}  \\
Hope my answer would be helpful to you!!!

And if helpful, then please mark as brainliest.

@Mahak24

Thanks...
☺☺

DaIncredible: thanks for marking as brainliest
DaIncredible: ☺☺
Similar questions