Math, asked by srathoresr99, 11 months ago

x=√5+√3, y=√5-√3 find the
  {x}^{4 }  -  {y}^{4}

Answers

Answered by laddhaharsh90
0

Answer:

hey mate here's your answer

 {x}^{4}  -  {y}^{4}  = (  {x}^{2} ) {}^{2}  -  ({y}^{2} ) {}^{2}

a {}^{2}  -  {b}^{2}  = (a + b)(a - b)

a=x² ; b= y²

 = ( {x}^{2}  +  {y}^{2} )( {x}^{2}  -  {y}^{2} )

( {x}^{2} +  {y}^{2})   = ( \sqrt{5}  +  \sqrt{3} ) {}^{2}  + ( \sqrt{5}  -  \sqrt{3} ) {}^{2}

( {x}^{2}  -  {y}^{2} ) = ( \sqrt{5}  +  \sqrt{3} ) {}^{2}  - ( \sqrt{5}  -  \sqrt{3}) {}^{2}

( \sqrt{5}  +  \sqrt{3} ) {}^{2}  =  \sqrt{5}  {}^{2}  +  \sqrt{3}  {}^{2}  + 2 \sqrt{15}

( \sqrt{5}  -  \sqrt{3} ) {}^{2}  =  \sqrt{5}  { {}^{2} } +  \sqrt{3}  {}^{2}  - 2 \sqrt{15}

(x²+y²)=(5+3+2_/15)+(5+3-2_/15)

=16

(x²-y²)=(5+3+2_/15) - (5+3 - 2_/15)

4_/15

 = 16 \times 4 \sqrt{15}  \\  = 64 \sqrt{15}  \:  \:  \:  \:  \: (answer)

may help dear.....✌❤

Answered by Rohit18Bhadauria
8

Given:

x=√5+√3 and y=√5-√3

To Find:

  • Value of x⁴-y⁴

Solution:

We know that,

\longrightarrow\mathrm{a^{2}-b^{2}=(a+b)(a-b)}

\longrightarrow\mathrm{a^{2}+b^{2}=(a+b)^{2}-2ab}

So, firstly we will find the value of (x+y)²-2xy

\mathrm{(x+y)^{2}-2xy}

\sf{(\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3})^{2}-2(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}

\sf{(2\sqrt{5})^{2}-2((\sqrt{5})^{2}-(\sqrt{3})^{2})}

\sf{20-2(5-3)}

\sf{20-2(2)}

\sf{20-4}

\sf{16}

Now,

\longrightarrow\mathrm{x^{4}-y^{4}}

\longrightarrow\mathrm{(x^{2})^{2}-(y^{2})^{2}}

\longrightarrow\mathrm{(x^{2}+y^{2})(x^{2}-y^{2})}

\longrightarrow\mathrm{(x^{2}+y^{2})(x+y)(x-y)}

\longrightarrow\mathrm{((x+y)^{2}-2xy)(x+y)(x-y)}

\longrightarrow\sf{(16)(\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3})(\sqrt{5}+\sqrt{3}-(\sqrt{5}-\sqrt{3}))}

\longrightarrow\sf{(16)(2\sqrt{5})(\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3})}

\longrightarrow\sf{(16)(2\sqrt{5})(2\sqrt{3})}

\longrightarrow\sf{64\sqrt{3\times5}}

\longrightarrow\sf\pink{64\sqrt{15}}

Hence, the required value is  \mathrm{\green{64\sqrt{15}}}.

Similar questions