Math, asked by srilekhakathula, 5 months ago

x=-5+4i then xPower 4 +9x cube+35x^-x+4 =

Answers

Answered by PharohX
2

Step-by-step explanation:

GIVEN :-

 \sf \: x =  - 5 + 4i

TO FIND :-

 \sf \:  {x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 4

SOLUTION :-

 \sf \: It \:  \:  is \:  \:  given \:  \:  that -

 \sf \: x =  - 5 + 4i

 \implies \sf \: x  + 5= 4i \:  \:  \:  \:  \:  \: ......(i)

 \sf \: Squaring \:  \:  both \:  \:  sides  -

 \implies \sf \: (x  + 5)^{2} =( 4i)^{2}

 \sf \: As  \:  \: we  \:  \: know \:  \:  that -

 \sf \: ( {i)}^{2}  =  - 1

 \implies \sf \: x ^{2}  + 10x + 25= - 16

 \implies \sf \: x ^{2}  + 10x + 25 + 16 = 0

 \implies \sf \: x ^{2}  + 10x + 41 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: .....(ii)

 \large \sf \: Now \:  \:  according  \:  \: to \:  \:  the  \:  \: Question  -

 \sf \:  {x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 4

 =  \sf \: {x}^{2}  ( {x}^{2}  + 9x + 35)  - x + 4

 \sf \:  =   {x }^{2} ( {x}^{2}  + (10x - x )+ (41 - 6)) - x + 4

 \sf \:  =  {x}^{2} ( {x}^{2}  + 10x + 41) -  {x}^{3}  - 6 {x}^{2}  - x + 4

  \sf \:  =  {x}^{2}  \times 0 - x( {x}^{2}  + 6x + 1) + 4

 \sf \:  = 0  - x( {x}^{2}  + (10x - 4x) + (41 - 40)) + 4

 \sf =  - x( {x}^{2}  + 10x + 41)  + 4 {x}^{2}  + 40x + 4

 \sf \:  =  - x( {x}^{2}  + 10x + 41) + 4( {x}^{2}  + 10x + 1)

 \sf \:  =  - x(0) + 4(0)

 \sf = 0

 \sf \: \orange{ Hence  \: Required  \: ans \:  }

 \green{ \sf \:  {x}^{4}  + 9 {x}^{3}  + 35 {x}^{2}  - x + 4 =  \orange{0}}

Similar questions