) x = 5 + 6coseco, y = 3 + 8coto eliminate theta
Answers
Answered by
39
Answer:
[ ( x - 5 ) / 6 ]^2 - [ ( y - 3 ) / 8 ]^2 = 1
Step-by-step explanation:
Given,
x = 5 + 6 cosec
x - 5 = 6 cosec
( x - 5 ) / 6 = cosec
Also,
y = 3 + 8 cot
y - 3 = 8 cot
( y - 3 ) / 8 = cot
From the properties of trigonometry :
- cosec^2 A - cot^2 A= 1
Therefore,
= > cosec^2 - cot^2
= > [ ( x - 5 ) / 6 ]^2 - [ ( y - 3 ) / 8 ]^2 = 1
Eliminated.
Answered by
14
Answer:-
- x = 5 + 6 cosec \ thetaθ
- x - 5 = 6 cosec \ thetaθ
- ( x - 5 ) / 6 = cosec \ thetaθ
- y = 3 + 8 cot \ thetaθ
- y - 3 = 8 cot \ thetaθ
- ( y - 3 ) / 8 = cot \ thetaθ
- cosec^2 A - cot^2 A= 1
So,
= cosec^2 \thetaθ - cot^2 \thetaθ
= ( x - 5 ) / 6 )^2 - ( y - 3 ) / 8 )^2 = 1
Similar questions