Math, asked by shana67, 1 year ago

) x = 5 + 6coseco, y = 3 + 8coto eliminate theta​

Answers

Answered by abhi569
39

Answer:

[ ( x - 5 ) / 6 ]^2 - [ ( y - 3 ) / 8 ]^2 = 1

Step-by-step explanation:

Given,

x = 5 + 6 cosec\theta

x - 5 = 6 cosec\theta

( x - 5 ) / 6 = cosec\theta

Also,

y = 3 + 8 cot\theta

y - 3 = 8 cot\theta

( y - 3 ) / 8 = cot\theta

From the properties of trigonometry :

  • cosec^2 A - cot^2 A= 1

Therefore,

= > cosec^2 \theta - cot^2 \theta

= > [ ( x - 5 ) / 6 ]^2 - [ ( y - 3 ) / 8 ]^2 = 1

Eliminated.

Answered by Anonymous
14

Answer:-

  • x = 5 + 6 cosec \ thetaθ
  • x - 5 = 6 cosec \ thetaθ
  • ( x - 5 ) / 6 = cosec \ thetaθ
  • y = 3 + 8 cot \ thetaθ
  • y - 3 = 8 cot \ thetaθ
  • ( y - 3 ) / 8 = cot \ thetaθ
  • cosec^2 A - cot^2 A= 1

So,

= cosec^2 \thetaθ - cot^2 \thetaθ

= ( x - 5 ) / 6 )^2 - ( y - 3 ) / 8 )^2 = 1

Similar questions