Geography, asked by riyagharde78, 9 months ago

x
5
Find "k' if 9x² - 5 kx + 25 = 0 has real and equal
roots.​

Answers

Answered by Anonymous
3

Answer:

\sf{The \ value \ of \ k \ is \ 6 \ or \ -6.}

Given:

  • \sf{The \ given \ quadratic \ equation \ is}\sf{9x^{2}-5kx+25=0}
  • \sf{\leadsto{Equation \ has \ real \ and \ equal \ roots.}}

To find:

  • \sf{The \ value \ of \ k.}

Solution:

\sf{The \ given \ quadratic \ equation \ is}

\sf{9x^{2}-5kx+25=0}

\sf{Here, \ a=9, \ b=-5k \ and \ c=0}

\sf{Discriminant(\Delta)=b^{2}-4ac}

\sf{But, \ roots \ are \ real \ and \ equal.}

\sf{\therefore{\Delta=0}}

\sf{\therefore{b^{2}-4ac=0}}

\sf{\therefore{(-5k)^{2}-4(9)(25)=0}}

\sf{\therefore{25k^{2}-900=0}}

\sf{\therefore{25k^{2}=900}}

\sf{\therefore{k^{2}=\dfrac{900}{25}}}

\sf{\therefore{k^{2}=36}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\leadsto{k=\pm6}}

\sf\purple{\tt{\therefore{The \ value \ of \ k \ is \ 6 \ or \ -6.}}}

Similar questions