(x+5) is a factor of (2x4+9x3+6x2-11x-6)
Answers
Answer:
x= -5
Putting the value of x in the equation,we get
(2(-5)^4+9(-5)^3+6(-5)^2-11(-5)-6)
(2*625+9*(-125)+6*25+55-6)
1250-1125+150+55-6
1455-1131
324
no,x is not a factor.
Step-by-step explanation:
Answer :
No
Step-by-step explanation :
To check whether (x + 5) is a factor of 2x⁴ + 9x³ + 6x² - 11x - 6, we should do the following steps —
Step I : Put (x + 5) equals to zero.
x + 5 = 0
x = - 5
Step II : Put the calculated value of x in the given polynomial.
f(x) = 2x⁴ + 9x³ + 6x² - 11x - 6
f(- 5) = 2(- 5)⁴ + 9(- 5)³ + 6(- 5)² - 11(- 5) - 6
= 2(625) + 9(- 125) + 6(25) - 11(- 5) - 6
= 1250 + (- 1125) + 150 - (- 55) - 6
= 1250 - 1125 + 150 + 55 - 6
= 1250 + 150 + 55 - 1125 - 6
= 1455 - 1131
= 324
Step III : If the answer is zero, then the (x + 5) is a factor, otherwise not.
The answer is 324 ≠ 0.
Hence, (x + 5) is not a factor of given polynomial.