Math, asked by mdhasham78672, 3 months ago

(x+5)square-(x-5)square by identity expand it​


hemanth12313: Answer is 20x

Answers

Answered by riddhibansal2006
0

Answer:

(x+5)²—(x-5)²

(a+b)²- (a-b)² =a²+b²+2ab - a²+b²-2ab ( identify 1and 2)

(x+5)²—(x-5)² = x²+5²+2(x)(5) - x²+5²-2(x)(5)

= x²+25+10x - x²+25-10x

= 25+25 (because x² is subtracted with x² and 10 x with 10x so 25 +25 is left )

=50

answer=5O

please mark the brainlest and vote and follow

Answered by MrHyper
29

\huge\rm\orange{{\underline{answer}}:}

\sf{ }

\bf{{\underline{To~solve}}:}

\tt{~~~~~~~~~~~ (x+5)^{2}-(x-5)^{2}}

\sf{ }

\bf{{\underline{Method}}:~1}

\bf{Identity:~a^{2}-b^{2}=(a+b)(a-b)}

\bf{Here:~a=x+5~~and~~b=x-5}

\tt{:\implies [(x+5)+(x-5)]×[(x+5)-(x-5)]}

\tt{:\implies [x+{\cancel{5}}+x~{\cancel{-5}}]×[{\cancel{x}}+5~{\cancel{-x}}+5]}

\tt{:\implies (2x)×(10)}

\tt{:\implies {\orange{\underline{\boxed{\bf 20x}}}}}

\sf{ }

\bf{{\underline{Method}}:~2}

\bf{Identity:}

\bf{(a+b)^{2}=a^{2}+2ab+b^{2}~~and~~(a-b)^{2}=a^{2}-2ab+b^{2}}

\tt{:\implies (x^{2}+10x+25)-(x^{2}-10x+25)}

\tt{:\implies {\cancel{x^{2}}}~+10x+~{\cancel{25}}~~{\cancel{-x^{2}}}~+10x~~{\cancel{-25}}}

\tt{:\implies 10x+10x}

\tt{:\implies {\orange{\underline{\boxed{\bf 20x}}}}}


MrHyper: The answer will be the same, if you use any of those two identities..
Similar questions