(x+5)(x+6)(x+7)....
Answers
Answer:
Coefficient of x^2x
2
= 18
Coefficient of x = 107
Constant term = 210
Step-by-step explanation:
Given : Expression (x+5)(x+6)(x+7)(x+5)(x+6)(x+7)
To find : Using algebraic identity find the coefficient of x Square x and constant term without actual expansion ?
Solution :
Expression (x+5)(x+6)(x+7)(x+5)(x+6)(x+7)
Using algebraic identity,
(x + a) (x + b) = x^2 + (a + b) x + ab(x+a)(x+b)=x
2
+(a+b)x+ab
Here, a=5 and b=6
(x + 5) (x + 6) = x^2 + (5+6) x + (5)(6)(x+5)(x+6)=x
2
+(5+6)x+(5)(6)
(x + 5) (x + 6) = x^2 + 11 x + 30(x+5)(x+6)=x
2
+11x+30
The expression form,
(x+5)(x+6)(x+7)=(x^2 + 11 x + 30)(x+7)(x+5)(x+6)(x+7)=(x
2
+11x+30)(x+7)
Now writing coefficient as,
Coefficient of x^2x
2
, 7+11= 187+11=18
Coefficient of x, 77+30=10777+30=107
Constant term, 30\times 7=21030×7=210