Math, asked by ganesh4630, 1 year ago

x = 6 cosec theta ,y = 8 cot theta​. ( eliminate theta from the following)

Answers

Answered by MaheswariS
53

Answer:

\bf{\frac{x^2}{36}-\frac{y^2}{64}=1}

Step-by-step explanation:

\text{Formula used:}

cosec^2A-cot^2A=1

\text{Given:}

x=6\:cosec\theta\:\text{and}\:y=8\:cot\theta

\implies\:\frac{x}{6}=cosec\theta\:\text{and}\:\frac{y}{8}=cot\theta

\text{we know that}\:cosec^2\theta-cot^2\theta=1

\implies\:(\frac{x}{6})^2-(\frac{y}{8})^2=1

\implies\:\frac{x^2}{36}-\frac{y^2}{64}=1

Answered by ColinJacobus
13

Answer:  The required equation after eliminating \theta is \dfrac{x^2}{36}-\dfrac{y^2}{64}=1.

Step-by-step explanation:  We are given to eliminate \theta from the following equations :

x=6\csc\theta~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\y=8\cos\theta~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)

We will be using the following trigonometric identity :

\csc^2x-\cot^2x=1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)

From equation (i), we have

x=6\csc\theta\\\\\Rightarrow \dfrac{x}{6}=\csc\theta\\\\\\\Rightarrow \left(\dfrac{x}{6}\right)^2=\csc^2\theta~~~~~~~~~~~~~[\textup{Squaring both sides}]\\\\\\\Rightarrow \dfrac{x^2}{36}=\csc^2\theta~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iv)

From equation (ii), we get

y=8\cot\theta\\\\\Rightarrow \dfrac{y}{8}=\cot\theta\\\\\\\Rightarrow \left(\dfrac{y}{8}\right)^2=\cot^2\theta~~~~~~~~~~~~~[\textup{Squaring both sides}]\\\\\\\Rightarrow \dfrac{y^2}{64}=\cot^2\theta~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(v)

Subtracting equation (v) from equation (iv), we get

\dfrac{x^2}{36}-\dfrac{y^2}{64}=\csc^2\theta-\cot^2\theta\\\\\\\Rightarrow \dfrac{x^2}{36}-\dfrac{y^2}{64}=1~~~~~~~~~~~[\textup{Using identity (iii)}]

Thus, the required equation after eliminating \theta is \dfrac{x^2}{36}-\dfrac{y^2}{64}=1.

Similar questions