Math, asked by ButterNo, 2 months ago

{(x+6)/(x+5)}-{(2x-1)/(x-4)}+{(x+4)/(x-2)}=0
Solve for x plz

Answers

Answered by 12thpáìn
2

Answer:

x=(-2)

Step-by-step explanation:

 {\mapsto\sf \dfrac{x+6}{x+5} - \dfrac{2x-1}{x-4}+ \dfrac{x+4}{x-2} = 0}

  • Taking LCM

{ \sf \mapsto\dfrac{\pink{\{(x-4)(x-2)\} (x-6) } -       \orange{\{(x+5)(x-2)\} -(2x-1) }      +    \green{\{(x+5)(x-4)\} (x+4) } }{ \gray{(x-5)(x-4)(x-2)} } = 0}

{ \sf \mapsto\dfrac{\pink{( {x}^{2}   - 6x + 8)(x-6) }  +      \orange{( {x}^{2} + 3x  - 10)    ( - 2x + 1) }      +    \green{( {x}^{2} + x - 20) (x+4) } }{ \gray{(x-5)(x-4)(x-2)} }  \times\blue{(x-5)(x-4)(x-2)} = 0 \times \blue{(x-5)(x-4)(x-2)}}

{ \sf \mapsto {x}^{3} - 28x + 48      - 2 {x}^{3}  - 5 {x}^{2}  +  23  x - 10 +     {x}^{3} + 5 {x}^{2}   - 16x - 80  = 0}

{ \sf \mapsto 2{x}^{3} - 2 {x}^{3}  - 28x + 7x + 48   - 90    - \cancel{  5 {x}^{2}}  +       \cancel{  5 {x}^{2}}    = 0}

{ \sf \mapsto   - 21x  - 42  = 0}

{ \sf \mapsto   - 21x   = 42 }

{ \sf \mapsto   21x   =  - 42 }

{ \sf \mapsto   x   =   \dfrac{ - 42}{21}  }

{ \bf \mapsto   x   =   - 2  }\\\\\\

  • \\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\gray{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab )\\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\\
Answered by madukasundi157
11

Answer:

↪️ x = -2.

✥ For the explanation see the attachment photo.

✥ Don't forget to thanks

✥ Mark as brainlist.

Attachments:
Similar questions