Math, asked by tharun10182004, 6 months ago

( x + 6) (x - 6) evaluate using Identity​

Answers

Answered by Anonymous
17

\sf \: <strong><u>\</u></strong><strong><u>h</u></strong><strong><u>u</u></strong><strong><u>g</u></strong><strong><u>e</u></strong><strong><u> </u></strong><strong><u>Answer</u></strong><strong><u>:</u></strong><strong><u> </u></strong>x² - 36

\blue {\: \sf {\boxed{identity:(a + b)(a - b) =  {a}^{2} -  {b}^{2}  }}}

⟹\sf \: (x + 6)(x - 6)

⟹\sf {x}^{2}  -  {6}^{2}

⟹\sf \:  {x}^{2}  - 36

\sf \:  How \: we \: obtained \: the\: identity?

\sf \: = (a - b)(a+b)

\sf \: = a(a+b)-b(a+b)

\sf \:=  {a}^{2}+ab-ab+{b}^{2}

\sf \:=  {a}^{2}-{b}^{2}

Answered by Anonymous
1

\huge\underline\mathbb\red{Answer}

Identity :- (a+b) (a-b) = a²-b²

Applying the above identity on it

=> (x+6) (x-6)

=> x²-6²

=> x²-36

Similar questions