Math, asked by himanikapoor077, 4 months ago

x/6 + y/16 = 6; y/12 - x/9 = 2 find the value of x and y. (ans: x= 18 y = 48)​

Answers

Answered by dixitasaikia02
1

Answer:

here is your answer hope it helps

Attachments:
Answered by brainlyofficial11
340

 \huge{ \fbox{answer}}

 \frac{x}{6}  +  \frac{y}{16}  = 6 \:  \:  \:  ..............(i)\\  \\  \frac{y}{12}  -  \frac{x}{9}  = 2  \:  \: \: ..............(ii)

_________________________

firstly consider equation (i)

 \frac{x}{6}  +  \frac{y}{16}  = 6  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \:  \:   \frac{8x + 3y}{48}  = 6  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \:  \:  \: \\  \\  \implies \:  8x + 3y  = 6 \times 48 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \implies \: 8x + 3y = 288 \:  \: ...........(iii)

now, consider equation (ii)

 \frac{y}{12}  -  \frac{x}{9}  = 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \:  \frac{3y - 4x}{36}  = 2  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \implies \: 3y - 4x = 2 \times 36   \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \implies \: 3y - 4x = 72  \: ..............(iv)

__________________________

now, we have two equations;

8x+3y = 288 ..............(iii)

3y-4x = 72 ................(iv)

solve these equations by elimination method;

subtract equation (iv) from equation (iii)

→ 8x + 3y - (3y - 4x) = 288 - 72

→ 8x + 3y - 3y + 4x = 288 - 72

→ 8x + 4x = 216

→ 12x = 216

→ x = 216/12

x = 18

now substitute the value of x in equation (iv)

→ 3y - 4x = 72

→ 3y - 4(18) = 72

→ 3y - 72 = 72

→ 3y = 72 + 72

→ 3y = 144

→ y = 144/3

y = 48

hence, value of x is 18 and y is 48

Similar questions