x+6/y=6
3x-8/y=5 solve by substituition method
Answers
Step-by-step explanation:
The value of (x, y) is (3, 2)
The given two equations are
x+\frac{6}{y}=6 \rightarrow(1)x+y6=6→(1)
3 x-\frac{8}{y}=5 \rightarrow(2)3x−y8=5→(2)
The given two equations can be solved using substitution method
Equation (1) can be written as
\frac{1}{y}=\frac{1}{6}(6-x) \rightarrow(3)y1=61(6−x)→(3)
Substituting equation (3) in equation (2)
3 x-\frac{8}{y}=53x−y8=5
3 x-\frac{1}{y}(8)=53x−y1(8)=5
3 x-8\left(\frac{1}{6}(6-x)\right)=53x−8(61(6−x))=5
3 x-8+\frac{8 x}{6}=53x−8+68x=5
3 x+\frac{8 x}{6}=133x+68x=13
18 x+8 x=7818x+8x=78
26x=7826x=78
x=\frac{78}{26}x=2678
x = 3
Substituting the value of x in equation (3)
\frac{1}{y}=\frac{1}{6}(6-x)=\frac{1}{6}(6-3)=\frac{1}{6} \times 3=\frac{1}{2}y1=61(6−x)=61(6−3)=61×3=21
\frac{1}{y}=\frac{1}{2}y1=21
Therefore y = 2
Hence the value of (x, y) is (3, 2).