Math, asked by rsowmiya0711, 6 months ago

x × (60-x)^3 differentiate​

Answers

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The differentiate

 \displaystyle \sf{x {(60 -x)}^{3} }

EVALUATION

Here the given expression is

 \displaystyle \sf{y = x {(60 -x)}^{3} }

Differentiating both sides with respect to x we get

 \displaystyle \sf{ \frac{dy}{dx}  =  \frac{d}{dx}  \bigg[x {(60 -x)}^{3}\bigg] }

 \displaystyle \sf{ \implies \frac{dy}{dx}  = x. \frac{d}{dx}  \bigg[ {(60 -x)}^{3}\bigg]  +  {(60 -x)}^{3} \frac{d}{dx}(x) }

 \displaystyle \sf{ \implies \frac{dy}{dx}  = - 3 x. {(60 -x)}^{2}+  {(60 -x)}^{3}  }

 \displaystyle \sf{ \implies \frac{dy}{dx}  =  {(60 -x)}^{2}  {( - 3x + 60 -x)}^{}  }

 \displaystyle \sf{ \implies \frac{dy}{dx}  =  {(60 -x)}^{2}  {(  60 -4x)}^{}  }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions